A demonstration project to define possible future land use scenarios for Staten island ("visions") and leverage existing tools/resources to analyze and compare these scenarios.
Much research in the Delta has focused on foodweb dynamics, stimulated by evidence that low productivity of plankton is linked to declines in several fish species including the endangered delta smelt. Pseudodiaptomus forbesi is the most abundant copepod (small crustaceans) in the Delta in summer. It is an important food source for many fishes and makes up about half of the food of delta smelt. This study focuses on the feeding, reproduction, and growth of copepods as essential foodweb support for fishes. This work investigates four diverse habitats including two open-water channels and two shallow habitats. The researchers will measure copepods' feeding rates on microscopic plants and animals, and relate feeding to their rates of growth and reproduction. Computer models will be used to estimate their movement and death rates. These results will show the sources of nutrition used for growth and reproduction of these key organisms. Results will inform how food webs respond to large scale changes in the Delta ecosystem, for example, restoration and the Sacramento wastewater treatment plant upgrade.
This project aims to quantify the impacts of common reed (Phragmites) invasion on community structure and ecosystem function during early stages of tidal restoration in wetlands. The study will focus on the Tule Red Tidal Restoration site in Suisun Marsh. The research aims to produce a conceptual model that will describe habitat structure, invertebrate communities, and predator use of wetlands affected by Phragmites invasion. The conceptual model resulting from this study will guide future predictions of wetland response to invasion and to develop mitigation strategies. Data collected will also support food web models and the understanding of invasive plants as stressors, as well as foster translational science to the management community.
This study focuses on understanding how restored tidal wetlands with different physical configurations function as refuge and rearing habitat for fishes, including native and imperiled species such as delta smelt and juvenile Chinook salmon. This research will assess the spatial distribution of predation risk as it varies within and across tidal wetlands. The proposed research will generate a statistical model that helps predict predation outcomes from various restored tidal wetland designs and channel configurations. This will be a powerful tool for managers to forecast how proposed habitat restoration or water management actions may impact native fish populations.
Pesticide and nutrient inputs from human activities are present in the Sacramenot-San Joaquin Bay-Delta, but the impact of these stressors together on algae is not well known. This research will examine the impacts of herbicides and nutrients on the growth and stress responses of phytoplankton and cyanobacteria present in the San Francisco Estuary. The algae in the delta are diverse with critical ecological effects, ranging from toxin-producing cyanobacteria that form hazardous algal blooms to benthic diatoms and green algae that make up the bulk of the aquatic food web. Contaminants and herbicides can cause changes in algae cellular health which may impact population growth. Understanding algal sub-lethal stress responses will improve our understanding of stressors on the bay-delta food web and bloom formation.
This project aims to improve understanding of atmospheric and hydrologic carbon fluxes in a restored tidal salt marsh in the South San Francisco Bay. I will use soil chambers to measure how much carbon dioxide and methane is taken in and emitted from the marsh. The project will also examine how spatial variability in marsh surface cover impact these exchanges. Shahan will use the data collected in this study to create a biogeochemical model that estimates the carbon budgets of wetlands in the Bay-Delta. A complete carbon budget will illuminate relationships between carbon fluxes and environmental variables. This information can support more informed management of wetlands, as well as allow researchers and decision makers to more effectively plan wetland restoration to be effective in managing carbon fluxes in the face of possible impacts due to climate change.
This project aims to characterize and quantify where detrital material (decaying plant matter) originates within wetlands, the composition of that material, and how export of detrital particles occurs. This project will combine powerful characterization tools and techniques that scale from molecules to ecosystems to assess spatial and temporal trends in particle sources, species and composition. Because restoration in the Sacramento-San Joaquin Delta will fundamentally alter particle distribution and food availability for aquatic organisms, this study will inform habitat restoration efforts and the revival of native fish populations. The tools developed and adapted for this project may inform management response during extreme conditions and climate events by helping to identify areas that may act as refugia for species.
This study will investigate fish swim performance in response to temperature, using salmon and two of its known predators: largemouth bass and Sacramento pikeminnow. The researcher will assess swim performance metrics and predation risk inside and outside the ideal thermal range of each species to determine if a temperature advantage predicts salmon survival in predation scenarios. This project's results will provide a mechanistic understanding of how temperature stress may influence mortality risk of juvenile Chinook salmon through predation, which will offer a more holistic perspective on the management of this species
Description The Diet and Condition study has provided information on the food habits of pelagic fishes in the estuary since 2005. We focus on the temporal and spatial differences in diet composition and feeding success of Delta Smelt, Striped Bass, Threadfin Shad, Longfin Smelt, Mississippi Silversides, and American Shad. Need Data from this project has been used to inform the Fall Low Salinity Habitat Program (FLaSH), Directed Outflow Project (DOP), and Management, Analysis and Synthesis Team reports, as well as life history models used for the conservation of fish and their habitats. Understanding what prey are utilized for food in the context of available prey, with the associated body-condition of fish, helps clarify the existence and timing of food limitation for young pelagic fish in the estuary. This work began as part of the Pelagic Organism Decline investigations and continued as a contributor to FLaSH investigations during which we in collaborated with the Fish Health Monitoring Project. Recently staff completed Longfin Smelt diet investigations as part element #296 (Longfin Smelt Investigations - in response to a litigation agreement) that will also contribute to the Longfin Smelt Conceptual Model and Synthesis effort (element #320). Finally, we will process Delta Smelt diets from investigations prompted by the Delta Smelt Resilience Strategy, and as part of the DOP. Objectives 1. What are the diets of pelagic fishes (especially Delta Smelt and Longfin Smelt) in the estuary and do they vary regionally or temporally? 2. Is there evidence of reduced feeding success spatially or temporally in the estuary? 3. Is feeding success associated with changes in relative weight or condition of fish? 4. Is there seasonal and regional overlap of diets between species (with a focus on age-0 Delta Smelt, Longfin Smelt, Striped Bass, Prickly Sculpin, Pacific Herring, and Threadfin Shad)?
Description The Aquatic Habitat Sampling Platform (AHSP) is an integrated aquatic species and habitat sampling system that can effectively monitor aquatic organisms and reveal habitat associations while having minimal or no "take" of sensitive species. Further development and deployment of the AHSP will expand data collection to shallow and off-channel habitat, while offering the capability to transition to deeper and open water habitats, providing reliable sampling efficiency estimates (e.g., probability fish detection) and "catch" per unit effort (i.e., number of individual species per volume of water sampled) and improving our knowledge about populations, habitat associations and major stressors of key organisms within the San Francisco Estuary (Estuary). Need Within the Estuary, numerous monitoring techniques are used. However, monitoring weaknesses for determining fish status and trends include: 1) restricted locations available for some techniques; 2) limited ability to simultaneously assess zooplankton and fish larvae; and 3) difficulty in estimating fish population size due to lack of gear efficiency information (Honey et al. 2004). Furthermore, past attempts at integrated abundance indices from more than one sampling method have had limited success. Although there continues to be considerable collaborative monitoring and research devoted to understanding Central Valley fish species, coordination among activities has been difficult. Other issues include permitting take of listed species and time-consuming monitoring with extended periods of down time due to sample post-processing of fish and invertebrate species. Identification of key microhabitats for each lifestage and attributes and linking associated physical parameters such as habitat features (e.g., depth, structure, channel type) and water quality is needed. Objectives:
Test AHSP operation within the Estuary while providing information highly relevant to pressing Delta management issues (IEP 2016); Provide detailed information on distribution and approximate abundance of adult Delta Smelt within identified habitat types (Biological Opinion on the Long-Term Operational Criteria and Plan for coordination of the Central Valley Project and State Water Project;https://www.fws.gov/sfbaydelta/documents/SWPCVP_OPs_BO_12-15_final_OCR.pdf); and Assess habitat associations and diurnal behavior of Delta Smelt and other fishes (Durand 2015).
Description This project tracks the movement and survival of wild and hatchery juvenile Chinook salmon with a large acoustic receiver network (JSATS), including real-time receivers, and the development of real-time metrics and retrospective modeling of juvenile salmon migration data. Need There is a well-documented need for improved detection and associated modeling of salmon migration and survival in the Central Valley. Understanding salmon survival and movement dynamics in the Delta and its tributaries is critical to the operation of state and federal water projects, recovery of ESA-listed species, and sport and commercial fisheries management. Objectives: Maintain 20 real-time JSATS receivers: will provide information on migrating salmon smolt location and timing of Delta entry and exist, which is key for informing time-sensitive decisions; Deployment of autonomous JSATS receiver array: this will provide fine-scale reach-specific survival and movement rates; Development of new metrics for the real-time data: this will inform key management relevant questions, such how many fish are entrained at critical junctions; Development of real-time website to convey movement and survival rates of acoustic tagged juvenile salmonids at various real-time locations in the Sacramento River and Delta.
Description Suisun Bay and Marsh are a key part of the habitat for Delta Smelt, but during drier periods such as summer, Delta Smelt may be at least partially excluded from Suisun Marsh due to high salinities. The purpose of this proposal is to provide scientific support a management action for Smelt, operation of the Suisun Marsh Salinity Control Gates (SMSCG). This facility is currently to tidally pump water into the Marsh to improve fall and winter habitat conditions for waterfowl, but could also provide a tool to manage aquatic habitat for Delta Smelt in other periods. Specifically, by using the SMSCG to direct more fresh water in Suisun Marsh, our prediction is that reduced salinities will improve habitat conditions for Delta Smelt in the region. Need The status of Delta Smelt is dire. As part of the Resources Agency's Delta Smelt Resiliency Strategy, in August 2018 we conducted pilot operations of the SMSCG to support Delta Smelt , with promising results. Based on this early success, we expect that the SMSCG will be used as a seasonal tool to support Delta Smelt in summer-fall in coming years as part of the coming FWS Biological Opinion and DFW ITP. Neither has been completed, but SMSCG operations for fish are expected to be required in each. Hence, the proposed study is intended to provide a scientific evaluation and guidance for an expected SMSCG action in 2020. Objectives The primary objective of this project is to evaluate the effectiveness of the SMSCG action. Questions to be addressed include: Did the action improve habitat conditions for Delta Smelt in the Suisun Region? Does the Suisun Region typically have better habitat and food web conditions than the upstream River Region? Do Delta Smelt respond favorably to the SMSCG flow action? Does operation of the SMSCG affect other fishes and clams?
Description We propose to develop an eDNA metabarcoding protocol to complement existing IEP monitoring surveys and assess the effects of management activities such as habitat restoration or flow alteration. We will develop a reference sequence database for native and invasive fish, mussels, and other macroinvertebrates present in the San Francisco Estuary (SFE). We will optimize a molecular and computational pipeline for metabarcoding and ground truth the method against three SFE monitoring efforts, each using different sampling gear. We will investigate the relationship between eDNA sequence read count and fish biomass or abundance (EDSM survey). Finally, we will determine the ability of metabarcoding to detect fish and macroinvertebrate assemblages across large and small spatial scales and over time. Need Our overarching goal is to develop a non-invasive, low cost monitoring tool that can be used in conjunction with existing IEP monitoring programs or used alone to assess biological community composition at locations of interest in the SFE. This proposal is related to the 2020 - 2024 IEP Science Strategy by creating a new monitoring tool that can assist in two main areas: 1) Restoring Bay-Delta native fishes and community interactions and 2) assessing effects of flow alteration on Bay-delta aquatic resources. Broadly, this study will inform management decisions by supporting and augmenting existing monitoring surveys in the SFE. It will also lead to a richer and more complete understanding of SFE ecology. This study is not explicitly required by law or agreement, and to our knowledge is neither a recommended action nor a result from an IEP review or synthesis effort. Objectives Objective 1: Develop robust molecular methods and a computational pipeline for detection of SFE fish and macroinvertebrates by eDNA metabarcoding of water samples. Objective 2: Compare eDNA metabarcoding head-to-head with existing and historical monitoring data from three ongoing ecological surveys using diverse conventional sampling gear and evaluate accuracy of fish abundance and biomass estimates from eDNA metabarcoding data. Objective 3: Evaluate factors that influence eDNA detection of species of interest (e.g. rare or invasive species) and suites of species (e.g. benthic fishes and invertebrates) on two spatial scales, within and between habitats, along with temporal variation.
Description The overarching goal of this project is to determine if predation by piscivorous fishes is an important explanatory driver of survival of juvenile Chinook Salmon emigrating through the north Delta. To achieve this goal, we seek to determine if variation in reach-specific characteristics of predation dynamics covary with survival of acoustictagged juvenile Chinook Salmon collected during the study period. This will be accomplished by comparing reach-specific characteristics of the piscivore community and its observed and modeled consumption of juvenile Chinook Salmon across a range of environmental conditions. Need This is not a mandated study but it addresses an important research need. Objectives: How does the piscivore community (species composition, size structure, and abundance) vary across specific migratory pathways (river reaches) in the North Delta? To what extent do environmental conditions (e.g., water temperature, turbidity, and discharge) control the consumption of juvenile Chinook Salmon? Do characteristics of the predator community explain variation in survival of acoustic tagged salmon collected during the study period?
Description The Direct Field Collections element (-089) provides funding support for expanded field collections, allowing CDFW to provide other, IEP-approved researchers access to research-capable boats and experienced operators, and thus the ability to safely sample the upper San Francisco Estuary. This element most recently facilitated investigations associated with the Fall Low Salinity Habitat (FLaSH) project and the Directed Outflow Project (DOP). Need This element allows CDFW and thus IEP to provide boat and operator time to assist collaborating researchers leading approved IEP projects with "on-the-water" sampling. There is no mandate for this element. Objectives To provide CDFW operational flexibility to assist collaborating researchers leading approved IEP projects with access to CDFW boat operators and boats to complete "on the water" sampling.
Description In a collaborative effort between CA Department of Water Resources, US Bureau of Reclamation, CA Department of Fish and Wildlife, United States Geological Survey, San Francisco State University, and UC Davis, this study will investigate the role of augmented summer and fall flows in the Yolo Bypass and North Delta areas on lower trophic food web dynamics and the benefits to listed fish species. Using both continuous and discrete sampling approaches, this study will relate hydrologic patterns to chlorophyll-a, nutrients and primary productivity, plankton densities and composition (phytoplankton and zooplankton), contaminant concentrations, as well as water quality parameters such as electrical conductivity, turbidity, temperature, and dissolved oxygen. In addition, caged hatchery Delta Smelt will be monitored to determine the effects of the managed flow action and increased food web productivity on fish survival, growth, and behavior. Need Due to the food-limited nature of the San Francisco Estuary, it is critical to understand mechanisms that result in successful food web productivity including phytoplankton blooms. Food limitation is one of the primary hypothesized causes of the Pelagic Organism Decline. In 2011 and 2012 there was evidence that a moderate Yolo Bypass flow pulse during fall agricultural drainage periods was followed by phytoplankton blooms in the lower Sacramento River. Managed flow actions in the following years showed an increase in food web productivity could be repeated; however, results varied across years and flow actions indicating more research is warranted to understand correlations between flow and abiotic conditions, and the biological response of the food web. The increases of summer/fall flows in North Delta, has been considered a management strategy as part of complying with USFWS Delta Smelt Biological Opinion Action 4. The augmentation of flows through the Yolo Bypass/North Delta is also included as one of several Delta Smelt Resiliency Strategies by Natural Resources Agency. Objectives: Determine if managed flow actions through the Yolo Bypass stimulate increased primary productivity locally and downstream, and if it is repeatable. Characterize how nutrients, chlorophyll and plankton (composition and density) in the Toe Drain, Cache Slough Complex, and lower Sacramento River change in response to flow pulses. Determine if nutrient subsidies of the source water and downstream are limited by abiotic and biotic factors. Characterize spatial differences and transport of pesticide contaminants in the Yolo Bypass in response to the flow actions. Determine survival, growth and behavior of caged hatchery Delta Smelt before and after the flow action in the Yolo Bypass.
This is a continuation of a five-year project funded by CDWR and CDFW and the Central Valley Project Improvement Act in 2017. The objective of the project is to improve estimates of population abundances for fall, winter and spring run juvenile Chinook Salmon at Sacramento and Chipps Island by improving trawl efficiency estimates using data from releases of coded wire tags (CWT), acoustic tags (AT), and by genetically sampling the trawl catch in 2025 and 2026. The project will (1) develop statistical models for estimating trawl efficiencies using 2016-2025 data for paired AT-CWT releases of winter run and fall-run Chinook Salmon; (2) use 2016-2025 genetic sampling of trawl catch in combination with efficiency estimates to estimate population abundances of fall, spring and winter run at Sacramento and Chipps Island for 2016-2025; (3) implement trawl efficiency studies for multiple salmon runs in 2025-2026 informed by the prior results and in coordination with hatcheries for inclusion of AT fish with existing CWT releases; and (4) combine trawl efficiencies with genetic samples of trawl catch to provide estimates of fall, spring and winter-run salmon abundance (with estimated precision) entering and exiting the Delta in 2016-2025.
Description The purpose of this study is to expand IEP monitoring and inference to other dominant near-shore, littoral habitats not sampled by beach seines through the use of boat electrofishing. To accomplish this we will sample key littoral fish species across various near-shore habitats in order to determine how best to estimate abundance, occupancy, capture probabilities, and related environmental drivers. Need Expanding DJFMP sampling to other habitats throughout the Delta will allow our program to detect and monitor fishes and ecological trends through time, alleviating a recognized data gap. Current sampling relies on data collected through non-random fixed point sampling of unobstructed habitats, which limits the utility of our data to inform management decision. Objectives • Design boat electrofishing survey methods to expand DJFMP’s monitoring into habitats and locations not sampled by beach seining. • Design and develop field and data analysis methods for estimating capture probability and abundance using boat electrofishing techniques. • Predict spatio-temporal distribution of habitats occupied by key littoral species.
The Environmental Monitoring Program (EMP) began in 1975 to conduct baseline and compliance monitoring of water quality, phytoplankton, zooplankton, and benthic invertebrates in the San Francisco Bay-Delta estuary. This monitoring program was designed to track the impact of water diversions to the State Water Project (SWP) and Central Valley Project (CVP) on the Bay-Delta. In the decades since, EMP scientists have monitored these constituents at fixed and floating stations throughout the estuary and ensured compliance with state and federal mandates such as Water Right Decision 1641 (D-1641). In the years and decades since its inception, EMP has become one of the cornerstones for scientists' and managers' understanding of the pace and pattern of change in this critical ecosystem. By sampling water quality and biological communities concurrently, EMP has created a dataset that is uniquely useful in better understanding causal connections between physical, biological, and biogeochemical processes.
This project aims to test the feasibility of using novel acoustic transmitters to track Delta smelt in the San Francisco Bay-Delta. Successful utilization of acoustic telemetry to track Delta smelt can provide researchers and resource managers with information about the species’ habitat preferences, the effects of water-management practices on Delta smelt movement and distribution, and the success of ongoing supplemental release efforts. The assessment of feasibility will include a comprehensive analysis of both the lethal and sublethal effects of surgical tag implantation on Delta smelt, as well as the development of a species-specific tagging protocol.
Bridging Science and Community: Engaging Youth in Delta Conservation through the Spinning Salmon Program is designed to enhance scientific understanding and engagement among underrepresented youth in the Sacramento-San Joaquin Delta. Leveraging the Youth-Focused Community and Citizen Science (YCCS) framework, the program connects youth to local ecosystems while addressing ecological challenges such as the Thiamine Deficiency Complex affecting Central Valley Chinook Salmon. The objectives focus on enhancing students' understanding of scientific concepts and processes, fostering science identity, self-efficacy, and environmental science agency, and cultivating a sense of environmental stewardship. Additionally, the program emphasizes the active involvement of community members in co-creating and refining educational strategies, ensuring these approaches are tailored to the diverse cultural and educational needs of the Delta community. This aligns with Science Action C under Management Need 4 in the 2022-2026 Science Action Agenda (SAA), contributing to a broader understanding of community-engaged research methodologies.
Due to pervasive anthropogenic influences (e.g., habitat alteration, climate change), current rates of biodiversity loss in the Sacramento-San Joaquin Delta are unprecedented. Application of appropriate management regimes and mitigation measures thus require effective biological monitoring to adaptively manage systems. Non-invasive environmental DNA (eDNA)-based tools for endangered species monitoring have gained attention as a complementary approach to traditional sampling because of their increased sensitivity and accurate quantification. However, the unique characteristics of environmental RNA (eRNA) make it a novel tool, allowing us to gain additional information that is not possible to obtain with eDNA. Using novel eRNA tools to improve detection and quantify health status of Smelt has only been theorized and remains to be empirically tested. Both Delta and Longfin Smelt species were historically ubiquitous in the Sacramento-San Joaquin Delta, but have declined precipitously over the past several decades. One source of mortality is entrainment into the south Delta water export pumps. Although the entrainment of juvenile and adult smelt has been regularly monitored at fish salvage facilities, entrainment of larval smelt (< 20 mm) is not quantified, thus remains largely unknown. Moreover, given the current climate change effect (e.g., increased heat stress), an understanding of how these endangered species will respond to acute stress response in the wild is lacking.
The Sacramento-San Joaquin Delta is a highly altered and impaired ecosystem that is critical to the freshwater infrastructure of the State of California. Salt intrusion from San Francisco Bay into the Delta, however, threatens freshwater delivery to the southern portions of the state and so management and restoration actions within the Bay-Delta must continuously balance both ecosystem and operational needs. While previous numerical modeling studies have sought to examine changes in the estuarine physics of the system, these tools are costly to develop and run. Thus there is a need to develop alternate methods for monitoring the movement of water through the Bay-Delta, as proposed here. The proposed research project approaches tracking the mixing between the Bay and Delta waters through the novel use of daily satellite color imagery. These findings will be linked to in situ measurements throughout the system and used to inform relevant agencies of flow characteristics within the waterways. This work is motivated by a need for high frequency monitoring of finescale features within the dynamic Bay-Delta ecosystem and to take advantage of new advanced remote sensing technology to inform on long-term trends within the Delta.
The primary objectives of this research are to: 1. Enhance monitoring programs to inform management in the presence of climate change and additional stressors, 2. Inform on ecosystem resilience to interannual hydrologic variations and climate change impacts, and 3. Evaluate how climate change and flow regime changes will impact water quality in the Delta.
The San Francisco Estuary (SFE) supports the southernmost reproductive population of longfin smelt (LFS) along the Pacific Coast. Long term monitoring studies have observed a precipitous decline of LFS in the SFE over the past several decades, and the San Francisco Bay-Delta Distinct Population Segment was listed as endangered under the Endangered Species Act in July of 2024. There are important gaps in our understanding of LFS ecology and movement within the highly urbanized SFE, posing challenges to the development of effective recovery strategies. More complete information about the movement and migration of LFS in the wild can lead to improved life-cycle modeling and provide insight into the species’ relationship with temperature, salinity and other habitat features of the SFE. An effective tool to learn about fish migration and movement is through a tracking method known as acoustic telemetry. Until recently this practice has been impossible on small fish such as LFS due to their body size relative to existing acoustic transmitters, or ‘tags’. With recent advances in telemetry technology, we now have an opportunity to implant newly miniaturized acoustic transmitters into adult LFS. However, before the results of telemetry studies utilizing these newly developed transmitters can be used to make inferences about wild populations, it is imperative to determine whether the tagged individuals are surviving and behaving in the same way as their un-tagged counterparts. The study aims to establish post-tagging survival and transmitter retention rates of wild and captive-reared LFS surgically implanted with newly miniaturizes acoustic transmitters, as well as the sublethal effects of transmitter implantation on LFS swimming performance. The results of this study will directly inform the implementation of acoustic telemetry on LFS, aiding in the conservation and recovery of an imperiled native species.
Invasive aquatic vegetation (IAV) is widespread in the Sacramento-San Joaquin Delta (Delta) and its change in coverage has been mapped at the species level using spectroscopy data collected once a year, from 2004 to 2008 and from 2014 to 2019. There was no funding to conduct a similar mapping campaign in 2020. This work aims to collect and analyze imagery in summer of 2020 to fulfill two main objectives. First is to inform the monitoring framework for aquatic vegetation put forth for the Interagency Ecological Program (IEP). Comparing spring and fall imagery of 2019 and the summer imagery of 2020, the project will evaluate which time period is ideal for optimal mapping of aquatic vegetation considering the logistical challenges of airborne imagery acquisition and the phenology of the species being mapped. The project will also contrast the pros and cons of the 3 proposed scenarios in the IEP monitoring framework: 1) two hyperspectral acquisitions a year (2019; “best case” scenario), 2) one acquisition a year (2020, “moderate” scenario) and 3) satellite data based monitoring (the Sentinel-2 study, “bare bones” scenario). The second objective of the project is to determine if the new treatment framework (new herbicide formulations and application schedules) is effective in controlling the old (Brazilian waterweed, water hyacinth) and newly added target weed species (water primrose, alligator weed) in the Delta ecosystem.
On-going subsidence of organic soils threatens the physical structure of the Delta, its central role in the state’s water system, many diverse species that depend on it, and threatens future agricultural production. Knowledge of baseline emissions and subsidence rates is important for developing alternative land use scenarios for maximizing benefits for sequestering carbon, reducing or reversing subsidence, providing income for landowners via the carbon market, and reducing flood risk. This project will gather, process, and analyze recent data in the Delta for land-surface elevation changes, greenhouse gas fluxes measured by eddy covariance and gas chambers, soil organic matter content, depth-to-groundwater, and soil organic thickness. These data will be used to update and calibrate the SUBCALC model and refine model inputs to improve the model’s ability to simulate subsidence and CO2 emissions. Collaboration with the Jet Propulsion Laboratory and UC Berkeley will allow use of CO2 flux and InSAR data to calibrate and validate the SUBCALC model. The Delta Conservancy is another partner assisting with assessment of modeling for land-use conversion planning. TNC and Metropolitan Water District are partners to assist with use of SUBCALC for engagement of the carbon market and collaborate with the Suisun RCD to improve estimates of subsidence and CO2 emissions.
Little is known about sturgeon mortality sources outside management of the White Sturgeon recreational fishery. Mortality has been observed throughout the SFBDE with increased reporting over the past several years. Much of which is concentrated (but not exclusively) in the Carquinez Strait; a narrow strait linking known sturgeon feeding grounds and vital corridor which all SFBDE sturgeon must pass to access spawning grounds. Adult sturgeon populations in the SFBDE are difficult to estimate in part due to unknown rates of mortality, outside the recreational fishery. Specific, non-angling mortality data and sources are needed to develop management strategies that that lead to robust abundance estimates ensuring persistence of these public resources. This project aims to dentify and enumerate non-fisheries sturgeon mortality in the San Francisco Bay Delta Estuary (SFBDE), specifically the Carquinez Strait. We plan to determine population characteristics of observed mortality, age structure and migration patterns/habitat use of collected sturgeon. We will also engage the local community through outreach efforts to investigate the public perception of sturgeon mortality in SFBDE and increase participation in our study.
The Sacramento River and its tributaries serve as critical habitat for the green sturgeon, listed as federally threatened due to its declining population and the impacts of anthropogenic activities such as dam operations and water extraction. We currently lack an understanding of the relationship between flow regimes and sturgeon migration, which is essential for developing effective management strategies to support the species' conservation and for required analysis under state and federal law. By modeling this relationship, this project will contribute to more informed water management, leading to fewer litigation risks for agencies and better outcomes for sturgeon.
This project will model the effects of flow regimes on adult Southern Distinct Population Segment (sDPS) green sturgeon migration within the Sacramento River basin to enhance sturgeon conservation and water management. Specifically, the research will model how flows and temperature affect adult green sturgeon spawning migration. The model will be used to forecast sturgeon movements under various flow scenarios, and the model, the results, and an explanation of their significance will be widely distributed via a website (with a publicly accessible modeling app), a policy brief, a public workshop, and other outreach.
The Sacramento-San Joaquin Delta (Delta) is experiencing an increase in the frequency and severity of Cyanobacterial Harmful Algal Blooms (CHABs), which can produce harmful cyanotoxins. This issue is likely to intensify due to climate changes and rising temperatures. The most common CHAB genus in the Delta is Microcystis. Currently, the most extensive dataset for tracking Delta CHABs is the Microcystis Visual Index (MVI), a qualitative assessment of Microcystis colony densities observed in surface water. This index, recorded by natural agency staff across numerous monitoring stations, provides broad spatial coverage but is inherently subjective and not quantitative, thereby limiting its utility.
This project has the following objectives: 1. Develop an MVI image classification model and model algorithm that can identify and quantify Microcystis aggregate presence and coverage level in digital photos. 2. Translate MVI rankings to Microcystis biomass ranges by obtaining data to ground-truth a range of Microcystis biomass that corresponds with MVI rankings 2 through 5. 3. Explore relationship between proportion of toxic Microcystis cells and Microcystis biomass levels by relating each MVI scale (for ranks 2 through 5) and Microcystis biomass range to a) proportion of toxic Microcystis cells (i.e. ratio of mcyE and 16S rDNA genes) and b) microcystin concentration, in surface grab samples.
SacPAS serves to provide information integration services to the Central Valley Project Improvement Act and practitioners working on matters related to ESA-listed fishes. The web-based services relate fish passage to environmental conditions and provide resources for evaluating the effects of river management and environmental conditions on salmon passage and survival.
The work performed as part of this agreement includes developing, maintaining, and making accessible query tools and decision support tools to access: historical, real-time and forecasted data; data summaries and visualizations; and hindcasts, forecasts, and scenario-derived predictions from statistical and mechanistic models. More specifically, the objectives are to:
1) Maintain and extend a secondary data repository of historical, real-time, and forecasted fish, environmental, and operational data from the Sacramento River and other river systems in the Central Valley, integrated from primary, public databases.
2) Maintain and improve the data query and visualization tools and services provided through the SacPAS website (https://www.cbr.washington.edu/sacramento/) for historical, real-time, and forecasted environmental and fish data.
3) Conduct research and provide access to modeling tools for fish survival and migration, through the SacPAS website, in support of Reclamation-funded and ESA-mandated activities, especially in efforts to predict, track, and evaluate the efficacy of proposed or actual actions.
The Wetland Regional Monitoring Program (WRMP) Fish and Fish Habitat Monitoring project is a collaborative effort to track biological responses to tidal wetland restoration in the San Francisco Estuary. Monthly sampling is conducted across a network of benchmark, reference, and project restoration sites in the South Bay and North Bay, with the goal of evaluating how wetland restoration influences fish assemblages, habitat use, and ecological condition.
The study uses primarily otter trawls to monitor fish and macroinvertebrate communities. Standardized field methods align with those used in long-term monitoring programs to ensure comparability and data integration across regions. Environmental data, including water temperature, salinity, and dissolved oxygen, are collected in tandem with biological sampling to assess habitat quality and seasonal dynamics.
The program addresses WRMP Guiding Question #4: How do policies, programs, and projects to protect and restore tidal marshes affect the distribution, abundance, and health of fish and wildlife? The data support adaptive management, regulatory compliance, and science-based restoration planning by identifying key habitats, tracking restoration performance, and detecting regional patterns in species composition and abundance over time.
The foundation of conserving a species is monitoring its abundance and habitat. This proposed work has three objectives which will help monitor green sturgeon abundance and understand green sturgeon habitat selection. These objectives build on 12 years of work to support the recovery of green sturgeon. The first objective is to continue the annual green sturgeon spawner census, while also improving our methods. This census is the main piece of information used in monitoring and assessing the Delta resident green sturgeon population. The second objective is to assess spawner site selection and habitat use which will help better understand sturgeon environmental needs so that restoration can better target those needs. The third objective is to assess the relationship between spring flow rates, temperature, and number of spawners observed, which will help managers better understand sturgeon flow cues and improve the accuracy of our spawner census.