The Delta Juvenile Fish Monitoring Program (DJFMP) has monitored natural-origin and hatchery-origin juvenile Chinook Salmon (Oncorhynchus tshawytscha) and other fish species within the San Francisco Estuary (SFE) since 1976 using a combination of midwater trawls and beach seines. Since 2000, three trawl sites and at least 58 beach seine sites have been sampled weekly or biweekly within the SFE and lower Sacramento and San Joaquin Rivers. The main objectives of the DJFMP are: 1. Document the long-term abundance and distribution of juvenile Chinook Salmon in the Delta. 2. Comprehensively monitor throughout the year to document the presence of all races of juvenile Chinook Salmon. 3. Intensively monitor juvenile Chinook salmon during the fall and winter months for use in managing water project operations (Delta Cross Channel gates and water export levels) on a real-time basis. 4. Document the abundance and distribution of Steelhead. 5. Document the abundance and distribution of non-salmonid species.
The Wetland Regional Monitoring Program (WRMP) Fish and Fish Habitat Monitoring project is a collaborative effort to track biological responses to tidal wetland restoration in the San Francisco Estuary. Monthly sampling is conducted across a network of benchmark, reference, and project restoration sites in the South Bay and North Bay, with the goal of evaluating how wetland restoration influences fish assemblages, habitat use, and ecological condition.
The study uses primarily otter trawls to monitor fish and macroinvertebrate communities. Standardized field methods align with those used in long-term monitoring programs to ensure comparability and data integration across regions. Environmental data, including water temperature, salinity, and dissolved oxygen, are collected in tandem with biological sampling to assess habitat quality and seasonal dynamics.
The program addresses WRMP Guiding Question #4: How do policies, programs, and projects to protect and restore tidal marshes affect the distribution, abundance, and health of fish and wildlife? The data support adaptive management, regulatory compliance, and science-based restoration planning by identifying key habitats, tracking restoration performance, and detecting regional patterns in species composition and abundance over time.