A team at UC Davis (Dr. Mark Lubell, Dr. Gwen Arnold, PhD Candidate Kyra Gmoser-Daskalakis) is conducting social science research on wetland restoration in the California Bay-Delta as part of a larger, interdisciplinary project on wetland restoration across multiple University of California campuses and national labs ("Coastal Wetland Restoration a Nature Based Decarbonization Multi-Benefit Climate Mitigation Solution"). First, the project is conducting social network and spatial analysis using the EcoAtlas project database to examine drivers of wetland restoration investment in the Bay-Delta from the 1980s to now. Second, case studies of individual restoration projects and interviews with 40+ restoration project partners examines barriers to the restoration implementation and perceptions and goals of multi-benefits among interested parties. Preliminary results have been shared at the State of the Estuary and Bay-Delta Science Conferences in 2024. See https://wetlands.ucsc.edu/index.html for more information.
Assessing the success of tidal marsh restoration is a top priority for coastal managers across the US. Estuarine habitat restoration has been prioritized due to the importance of the ecosystem functions (Callaway et al. 2012) and services (Costanza et al. 2014) they provide and the threats to them by climate driven sea-level rise (hereafter SLR; Craft et al. 2009, Donnelly & Bertness 2001, Schile et al. 2014) and other stressors (Mariotti & Fagharazzi 2013). Given the importance of management for estuarine habitats to survive SLR (Kirwan & Megonigal 2013) and the importance of public responses to approve and fund restoration projects, it is critical to understand how to broadly assess the success of restoration from the perspectives of both ecological performance and public perceptions. However, the San Francisco Estuary (SF Estuary), stretching from the Lower San Francisco Bay through Suisun Marsh to the Sacramento-San Joaquin Delta, encapsulates diverse social and environmental dynamics (Moyle et al. 2014) and varying perceptions by sociodemographic group (Rudnick et al 2022). Our project is focused on the Suisun Marsh and Delta and seeks to understand these complexities by integrating social, environmental, and management perspectives.
The Wetland Regional Monitoring Program (WRMP) Fish and Fish Habitat Monitoring project is a collaborative effort to track biological responses to tidal wetland restoration in the San Francisco Estuary. Monthly sampling is conducted across a network of benchmark, reference, and project restoration sites in the South Bay and North Bay, with the goal of evaluating how wetland restoration influences fish assemblages, habitat use, and ecological condition.
The study uses primarily otter trawls to monitor fish and macroinvertebrate communities. Standardized field methods align with those used in long-term monitoring programs to ensure comparability and data integration across regions. Environmental data, including water temperature, salinity, and dissolved oxygen, are collected in tandem with biological sampling to assess habitat quality and seasonal dynamics.
The program addresses WRMP Guiding Question #4: How do policies, programs, and projects to protect and restore tidal marshes affect the distribution, abundance, and health of fish and wildlife? The data support adaptive management, regulatory compliance, and science-based restoration planning by identifying key habitats, tracking restoration performance, and detecting regional patterns in species composition and abundance over time.
Water primrose (Ludwigia spp.) is a highly invasive, non-native floating macrophyte in the Delta. In recent years, water primrose has extended its niche into marsh habitat, causing extensive mortality of marsh macrophytes including tules and cattails. The goal of this project is to determine whether the growth strategy of water primrose, its allelopathic properties, or factors related to plant community structure are the cause of marsh loss following water primrose invasion in the Delta. Part of this study will identify and map the marshes most vulnerable to loss and quantify the spatial trajectory of marsh loss during the past 15 years. The ultimate benefit will be an improved understanding of the water primrose invasion processes in the Delta, which can be used to prioritize herbicide treatment of this highly invasive plant in marshes most vulnerable to invasion and with the highest habitat value.
Objectives: