Science activities

Reset filters

3 records


















Records

Currently, sorted by last updated
  • Title

    Harmonizing pesticide risk management of the Bay Delta watershed

    Lead University of California - Santa Barbara [UCSB]
    Description Objective One: Employ high-resolution irrigation data to predict pesticide risks in the Bay Delta Watershed (BDW). This effort will enable more accurate prediction of health hazards given irrigation is a key driver of pesticide transport to surface and ground water. The effects of irrigation methods to pesticide transport vary significantly in their contribution of pesticides to runoff/leachate due to effects on pesticide build-up/wash-off and soil moisture conditions antecedent to precipitation. Objective Two: Provide harmonized species indicators of pesticide toxic burden releases for the Bay Delta which consider diverse resident taxa and human health. California benefits from a plethora of academic researchers, environmental advocacy groups, municipalities, and government groups working to protect the environment. Due to the complexities of this work, efforts often focus on a particular taxa or environmental compartment. This introduces a significant challenge in evaluating the pros and cons of any particular pesticide use. Currently, 79 of the 208 watersheds near the Delta which receive agricultural pesticide applications have increasing pesticide toxic burdens to aquatic taxa. Enabling evaluation of chemical alternatives which reduce toxic burdens across taxa is important to restoring ecosystem health. Objective Three. Quantify the variability of pesticide degradation and the significance to pesticide risk in the BDW. The degree to which pesticides remain in the soils of the BDW increases their probability for accumulation, transport, and nontarget affects. Degradation is highly variable in soils; an investigation of 10 pesticides in 8 soil types under equivalent conditions demonstrated a mean difference of 540% in the minimum and maximum rate of degradation for pesticides evaluated. Yet, researchers and regulators often only employ the median observed rate of degradation which may under predict risks to waterbodies of the BDW.
    Science topics Pesticides
    Updated November 30, 2022
  • Title

    Integrating social and ecological research to control invasive species: fostering collective action among private and public stakeholders

    Lead Suisun Resource Conservation District
    Description This project will establish an integrated pest management approach for Phragmites (Common reed), an aggressive invasive plant in Delta wetlands. Results will highlight social and cultural barriers to collective action for invasive species control, and include communication tools for developing a regional strategy for Common reed control.
    Science topics Invasive / non native species, Pesticides, Phragmites, Socio-economic drivers
    Updated October 13, 2023
  • Title

    Impact of Temperature and Contaminants on Chinook salmon survival: A Multi‐Stressor Approach

    Lead National Oceanic and Atmospheric Administration [NOAA]
    Description This project will examine how contaminant exposures at different temperatures impact a number of critical physiological functions and the associated genes that maintain salmon fitness. The project will determine the sensitivity of fall‐run Chinook salmon to a mixture of bifenthrin, a pyrethoid pesticide, and triclosan, an antibacterial added to personal care products, at optimal and high temperatures that Chinook salmon encounter during their outmigration through the Sacramento and San Joaquin rivers. The hypothesis is that these stressors will impact salmon predator and disease susceptibility and will interact, such that the cumulative effect on salmon could not be predicted from multiple single exposures. To test the hypothesis, fall‐run Chinook salmon parr will be exposed to sublethal concentrations of bifenthrin, triclosan, and a mixture of bifenthrin and triclosan at different temperatures. The impacts of these exposures on salmon will be assessed with the following endpoints: (1) predator susceptibility through altered response latencies and escape velocities;  (2) disease susceptibility in response to a disease challenge; and (3) differential gene expression by high‐throughput sequencing of the Chinook salmon transcriptome.
    Science topics Pesticides
    Updated September 28, 2023