Science activities

Reset filters

237 records


















Records

Currently, sorted by last updated
  • Title

    Suisun Marsh Salinity Control Gates Action Pilot Study

    Lead California Department of Water Resource [DWR]
    Description In summer 2018 we used a unique water control structure in the San Francisco Estuary to direct a managed flow pulse into Suisun Marsh. Field monitoring showed that turbidity and chlorophyll were at higher levels in Suisun Marsh, representing better habitat conditions, than the upstream Sacramento River region throughout the study period. Fish monitoring data suggested that small numbers of Delta Smelt colonized Suisun Marsh from the Sacramento River during the 2018 Flow Action.
    Science topics Delta Smelt, Phytoplankton, Salinity
    Updated September 28, 2023
  • Title

    Habitat, hatcheries, and nonnative predators interact to affect juvenile salmon behavior and survival

    Lead University of California - Santa Cruz [UCSC]
    Description Chinook salmon are an iconic part of California’s environment and heritage, and important both economically and culturally. In the Sacramento River, the winter-run Chinook population is endangered, and there is strong interest in restoring these populations. To do so, resource managers need to better understand the pressures on wild populations. Predation by nonnative predators affects survival of young salmon but may also affect the behavior of salmon. Changes to salmon behavior also have costs but are not currently considered in management. Managers need information on how predators affect juvenile salmon behavior, how they might vary under different conditions, and how they scale up to affect populations.
    Science topics Chinook Salmon, Fishing
    Updated November 17, 2022
  • Title

    Investigation of the resilience of the salt marsh harvest mouse and best management practices in response to climate change

    Lead University of California - Davis [UC Davis]
    Description This study aimed to investigate the response of the salt marsh harvest mouse to several threats of climate change, including extreme annual climate cycles and sea level rise. The study was based on ongoing population surveys in the Suisun Marsh, and a study of upland/elevated refuge throughout the species’ range, over the two-year study. It also involved the piloting of advance remote detection technology (camera traps, audio detectors, and digital mouse traps) and effective, affordable high tide refuge (islands and trellises). Finally, ongoing trapping efforts at established survey sites is providing data for ongoing analysis on the effects of weather patterns and space needs of populations.
    Science topics Climate change, Salt marsh harvest mouse, Saltwater / freshwater marshes
    Updated November 17, 2022
  • Title

    Effects of copper exposure on the olfactory response of Delta smelt [Hypomesus transpacificus]: Investigating linkages between morphological and behavioral anti-predator response

    Lead University of California - Davis [UC Davis]
    Description This study aimed to address the question of how water-borne copper can affect the ability of delta smelt to detect predator related odorants and conduct essential behaviors. To do this, the project included a thorough morphological and cytological study of the delta smelt olfactory organ, which had previously not been well-studied. The researchers also characterized the olfactory mediated antipredatory response to alarm cues and assessed the effects of copper exposure on the anti-predator behavior and morphology of the olfactory rosette of delta smelt.
    Science topics Copper, Delta Smelt, Toxicity
    Updated November 17, 2022
  • Title

    Effect of temperature and salinity on physiological performance and growth of longfin smelt: Developing a captive culture for a threatened species in the Sacramento- San Joaquin Delta

    Lead University of California - Berkeley [UC Berkeley]
    Description This research project aimed to improve understanding of the physiological requirements for survival and reproduction across the entire life history of longfin smelt (from egg to larvae to juvenile to reproducing adult). The overall goals of this project were to assist in developing a captive longfin smelt culture and assess longfin smelt responses to multiple stressors across all life stages, which has been difficult because of extremely low (<10%) larval survival of these fish.
    Science topics Delta Smelt, Longfin Smelt, Salinity, Temperature
    Updated November 17, 2022
  • Title

    Yolo Bypass Salmonid Habitat Restoration and Fish Passage

    Lead California Department of Water Resource [DWR]
    Description The Yolo Bypass Salmonid Habitat Restoration Project works to reconnect the floodplain for fish during the winter season and improve connectivity within the bypass and to the Sacramento River. The project provides seasonal inundation that mimics the natural process of the Yolo Bypass floodplain and improves connectivity within the bypass and to the Sacramento River.
    Science topics Chinook Salmon, Endangered species
    Updated April 29, 2022
  • Title

    Yolo Bypass Salmonid Habitat Restoration and Fish Passage: Scenario Analysis of Fremont Weir Notch – Integration of Engineering Designs, Telemetry, and Flow Fields

    Lead U.S. Army Corps of Engineers [USACE]
    Description This study analyzes 12 notch scenarios in the Fremont Weir in terms of entrainment of juvenile salmon. The goal is to quantify the relative entrainment rates (between 0 and 1) across the suite of scenarios and to identify possible strategies for enhancing entrainment outcomes. This study does not predict future entrainment as models generally do not predict future outcomes so much as highlight trends
    Science topics Chinook Salmon, Endangered species, Water conveyance / infrastructure
    Updated April 29, 2022
  • Title

    Investigating the Factors that Affect Distribution, Abundance, and Recruitment of Age-0 Longfin Smelt in the upper San Francisco Estuary

    Lead Metropolitan Water District of Southern California
    Description
    Science topics Longfin Smelt
    Updated April 29, 2022
  • Title

    The Effect of Drought on Delta Smelt Vital Rates

    Lead University of California - Davis [UC Davis]
    Description This Project is necessary to obtain a better understanding of the effects of drought and management's response to drought on the Delta Smelt in order to avoid extinction. This study will test predication from other models to evaluate the impact of drought and management measures on Delta Smelt responses in terms of growth, phenotype diversity and survival during the spring and summer, when drought impacts are greatest.
    Science topics Delta Smelt, Drought
    Updated November 18, 2022
  • Title

    The effects of early hypersaline acclimation due to climate change on the toxicity of pyrethroid, an insecticide, in salmonids.

    Lead University of California - Riverside [UC Riverside]
    Description Sea level rise and drought are expected to result in hypersaline waterways in the Delta. Endangered Chinook salmon and Steelhead trout go through smoltification to be able to live and mature in saline environments. However, with salinities and temperatures increasing in historically freshwater areas, these fish may be facing new stressors. Pesticide runoff into the Delta is common due to the urbanization and agriculture of many regions and can adversely affect fish. Additionally, previous research has shown that salinity exposure increases the toxicity of contaminants in anadromous fish, and it is had been demonstrated that bifenthrin, a common insecticide in the Bay, can have endocrine disrupting effects on juvenile salmonids. This project will examine the impacts of hypersaline conditions, various temperatures, and exposure to bifenthrin on the development and survival of juvenile Chinook salmon and Steelhead trout. Specifically, it will: Test the impacts of premature hypersaline acclimation and temperature on the survivial and smoltification process of a range of juvenile salmonids; Test the combined impacts of premature hypersaline acclimation, temperature, and bifenthrin exposure on smoltification, survival and behavior;and Predict the population level effects of drought and pesticide runoff on the health of endangered salmonids Additionally, this research will provide information to CA Department of Pesticide Regulation for potential pesticide management in the Delta, as well as to the CA Department of Fish and Wildlife for conservation practices of endangered juvenile salmonids in the Delta.
    Science topics Salinity
    Updated April 29, 2022
  • Title

    A Next-generation Model of Juvenile Salmon Migration through the Sacramento-San Joaquin Delta

    Lead University of California - Santa Cruz [UCSC]
    Description While migrating through the Delta and its tributaries, Chinook salmon and steelhead move through diverse habitats, encounter predators, interact with highly dynamic flows, and are impacted by a multitude of human-made structures. Funding for this Project will be use to develop integrated system-level models that will effectively manage salmonid populations and other key resources in the California Central Valley.
    Science topics Salmon migration
    Updated November 18, 2022
  • Title

    Reconstructing juvenile salmon growth, condition and Delta habitat use in the 2014-15 drought and beyond

    Lead University of California - Davis [UC Davis]
    Description This study uses otolith chemistry and microstructure to monitor how salmon use the Delta as rearing habitat and a migratory corridor, and the mechanisms cuing their outmigration from natal rivers. We will quantify the extent to which Delta-rearing contributes to salmon population resilency under different conditions (including drought and flood conditions) and provide baseline data to assess population responses to future habitat restoration and changing climate. Physical tags are limited to larger fish that are more sea-ready than fry, and are thus ineffective to estimate the full rearing potential of Delta habitats, while abundance surveys provide only a snapshot of information. Otolith reconstructions allow us to estimate “who” is using the Delta (which populations and life history types), for how long, and their growth rates relative to other rearing habitats. This project will generate empirical data that will inform management actions aimed at maximizing salmon abundance, life history diversity, and resilience to future stressors.
    Science topics Drought
    Updated April 29, 2022
  • Title

    Identify environmental drivers influencing habitat attributes and effect on salmonids survival.

    Lead State Water Contractors [SWC]
    Description
    Science topics None specified
    Updated April 29, 2022
  • Title

    Juvenile salmon distribution, abundance, and growth in restored and relict Delta marsh habitats

    Lead California Department of Fish and Wildlife [CDFW]
    Description Project is to conduct a study that will to determine whether observed salmon responses match the assumptions and expectations of habitat suitability and life-cycle models currently guiding resource management and habitat restoration in the Bay-Delta, while at the same time supplying much-needed quantitative information to improve these models. The broader purpose is to improve these models to allow more objective and accurate predictions of alternative management and restoration actions intended to recover Central Valley salmon populations. The overarching goal of this project is to quantify the distribution, abundance, residence time and growth of juvenile salmon within the Bay-Delta.
    Science topics None specified
    Updated April 29, 2022
  • Title

    Impact of Climate Variability on Surface Water Quality: Cyanobacteria and Contaminants

    Lead University of California
    Description
    Science topics Harmful algal blooms HAB
    Updated April 29, 2022
  • Title

    Impact of Spatial and Temporal Dynamics of Water Flows on Migratory Behavior of Chinook Salmon Smolts in the South Delta

    Lead University of California - Davis [UC Davis]
    Description Funding for this study project will be use track the swimming movements of salmon smolts during migration using acoustic transmitters and detection arrays near the confluence of Old River and the San Joaquin River. Analyses will be carried out to determine swimming velocity relative to current velocity. Modeling will estimate fish distribution; fish transit times; entrainment of fish into channels of the south Delta; and alternative water export management scenarios that may result in reduced entrainment.
    Science topics None specified
    Updated November 19, 2022
  • Title

    Impacts of climate change on pesticide bioavailability and sublethal effects on juvenile Chinook salmon in the Delta: Potential benefits of floodplain rearing

    Lead University of California - Riverside [UC Riverside]
    Description The Project will include field studies to estimate loadings and bioavailability of pesticides, concentrations of pesticide residues in salmonid prey, and the trophic basis of juvenile Chinook salmon growth (benthic vs. pelagic food web pathways) and how each of these differ between floodplain and river channel habitats in the Delta. Data from the field studies will inform development of laboratory studies that will assess the potential effects of exposure to environmentally-relevant pesticide types and concentrations in prey on swimming performance, olfaction and neuroendocrinology of juvenile Chinook salmon. Laboratory studies will also evaluate how water temperature (including increased water temperatures predicted with climate change) influences these sub-lethal effects of pesticides on juvenile salmon.
    Science topics None specified
    Updated November 29, 2022
  • Title

    Identifying the Causes of Feminization of Chinook Salmon in the Sacramento and San Joaquin River System

    Lead University of California - Berkeley [UC Berkeley]
    Description Purpose was to assess the potential importance of endocrine-disrupting chemical contaminants to salmon and other resident speices of waters that are discharged into the San Francisco-San Joaquin Delta.
    Science topics Chinook Salmon
    Updated April 29, 2022
  • Title

    How Abiotic Processes, Biotic Processes, and Their Interactions Sustain Habiata Charactersitics and Functions in River Channels and Their Floodplains: An Investigation of How a Reach of the Merced River Responds to Restoration

    Lead University of California - Santa Barbara [UCSB]
    Description The purpose of this project is to determine how river restoration affects the abundance and distribution of salmonid and non-salmonid fishes at critical life stages. The proposal involves field survey of hydraulics, sedimentation processes, channel changes, habitat conditions, invertebrate and fish communities and their interactions.
    Science topics None specified
    Updated April 29, 2022
  • Title

    Review of Four Juvenile Salmon Coded Wire Tag Experiements Conducted in the Delta

    Lead U.S. Fish and Wildlife Service [USFWS]
    Description The US Fish and Wildlife Service, Stockton Fish and Wildlife Office, has since the mid-1980s conducted several multi-year release-recovery experiments with coded-wire-tagged juvenile Chinook salmon. The objectives of the studies were (1) to estimate survival through the lower portions of the Sacramento and San Joaquin river systems, the California Delta, and (2) to quantify the factors affecting survival. Four of these studies, listed more or less by their historical start dates, are the Delta Cross Channel, Interior, Delta Action 8, and VAMP experiments.
    Science topics Chinook Salmon
    Updated April 29, 2022
  • Title

    Predicting the Effects of Invasive Hydrozoa [Jellyfish] on Pelagic Organisms Under Changing Salinity and Temperature Regimes

    Lead University of California - Davis [UC Davis]
    Description The purpose of this project seeks to investigate the potential effects of jellyfish, a devising invader of some ecosystems, on the SFE ecosystem, to determine the key factors allowing successful establishment and spread of these species, and to predict future effects and spread of the invasions.
    Science topics Water temperature, Salinity, Pelagic fish, Jellyfish
    Updated April 29, 2022
  • Title

    Climate change impacts to San Francisco Bay-Delta wetlands: Links to pelagic food webs and predictive responses based on landscape modeling

    Lead San Francisco State University [SFSU]
    Description The purpose of this project is to 1) evaluate the potential impacts of climate change on SF Bay-Delta tidal wetlands, 2) improve our understanding of the linkage between these wetlands and the pelagic food web, especially fish populations, and 3) use this information to make predictions about potential effects of climate change on Bay-Delta fish populations.
    Science topics Pelagic fish, Wetlands
    Updated April 29, 2022
  • Title

    Quantitative Indicators and Life History Implications of Environmental Stress on Sturgeon

    Lead University of California - Davis [UC Davis]
    Description The purpose of this project is to analyze the effects of the pollutants on the overall fitness of different life stages of the green and white sturgeon. This research will significantly enhance our understanding of stressors on sturgeon and allow further development of life history models.
    Science topics Water temperature, Salinity, Pelagic fish, Methylmercury, Sturgeon
    Updated April 29, 2022
  • Title

    Comparison of Nutrient Sources and Phytoplankton Growth and Species Composition in Two Rivers: Their Roles in Determining Productivity and Food Web Conditions in Suisun Bay and the Delta

    Lead San Francisco State University [SFSU]
    Description
    Science topics Phytoplankton, Pelagic fish, Nitrogen / ammonia
    Updated April 29, 2022
  • Title

    The Transport and Dispersion of Rafting Vegetation in the Sacramento-San Joaquin Delta

    Lead University of California - Berkeley [UC Berkeley]
    Description The research we are proposing here is focused on developing a thorough, mechanistic understanding of how rafting vegetation, such as hyacinths or egeria, is transported in the Sacramento-San Joaquin Delta. Our approach is to examine in detail the forces that act on rafts of vegetation, and the resulting raft accelerations, to establish a predictive model of raft pathlines. Our model development will be built around a series of field experiments that include measurements of raft movement using GPS-logging drifters integrated into rafts, tidal and wind-forcing using a boat mounted current profiler and an anemometer, and direct estimation of the water-induced shear stress using a point velocity meter incorporated into the actual rafts. These field observations will be used to critically evaluate a numerical model of both channel (tidal) flows and resulting raft movement. Our initial development will include a highly-resolved channel flow model, which will explicitly capture more lateral variability, including low velocity side “pockets”, than is typically resolved with Delta scale hydrodynamic models. Initially, this will allow us to carefully evaluate the quality of our raft tracking calculations. Once the approach is established to be accurate, however, these high-resolution flows will be used to numerically calculate the effective advection and dispersion of rafts in the Delta channel under consideration. This analysis will be focused on parameterizing the effects on raft transport of structures and processes that are unresolved in typical Delta hydrodynamics models. An example of a process that is likely to be important to parameterize is the trapping and retention of rafts along the perimeter of channels due to off-axis wind forcing, and the resulting along-channel dispersion of rafts. In order to examine the effective advection and dispersion of rafts in Delta channels, we propose to pursue this combination of field and numerical studies of raft transport in locations of increasing complexity: first in idealized, straight channels, then in a natural, sinuous channel and a channel junction, and finally throughout the entire Delta. Our research is strongly motivated by the desire to provide a predictive model of dispersion in the Delta for floating objects that respond to both wind and tidal forcing. Immediate applications involve the movement of hyacinth rafts and egeria to evaluate potential management strategies. Important future applications are likely to include consideration of other biological invasions, due to the potential for rafts to provide a transport pathway, and analysis of the movement of accidental or intentional releases of floating material in the Delta.
    Science topics None specified
    Updated November 29, 2022
  • Title

    The Consequences of Operational Decisions on Water Quality: Reconciling Delta Smelt, Salmon, and Human Needs

    Lead Contra Costa Water District [CCWD]
    Description The purpose of this project is to assess the consequences of actions taken to protect threatened or endangered Chinook salmon species relative to other upstream and in-Delta water management actions that have changed seasonal salinity in the Delta, thus reducing the ability of delta smelt to survive as a species;and, to investigate with modeling scenarios the potential to ameliorate this trade-off with specific operational actions.
    Science topics Delta Smelt, Chinook Salmon
    Updated April 29, 2022
  • Title

    A Calibration-Free Approach to Modeling Delta Flows and Transport

    Lead University of California - Berkeley [UC Berkeley]
    Description The purpose of this project is to develop and evaluate an integrated system for the prediction of Delta flows and transport in real-time that doesn't rely upon historical data sets for calibration and validation. The system consists of observational and computational components, along with real-time communication and coordination.
    Science topics None specified
    Updated April 29, 2022
  • Title

    Pilot Mark-Recapture Study to Estimate Delta Smelt Pre-Screen Loss and Salvage Efficiency

    Lead U.S. Fish and Wildlife Service [USFWS]
    Description The purpose of this project is to perform a study to determine whether it is feasible to quantify entrainment losses of juvenile and adult delta smelt due to water exports. This information is critical to better understanding the movement of Delta smelt in the system.
    Science topics Delta Smelt
    Updated April 29, 2022
  • Title

    Are Apparent Sex Reversed Chinook Salmon a Symptom of Genotoxicity?

    Lead University of California - Davis [UC Davis]
    Description Goal was to test the relative importance of chemical stressors on population viability and genetic diversity for fall-run Chinook salmon (in association with environmental contaminant exposure in the Central Valley delta).
    Science topics Chinook Salmon
    Updated April 29, 2022
  • Title

    Using Flowcam Technology to Measure High Frequency Spatial and Temporal Variation in Phytoplankton and Zooplankton Species Composition and Develop State-of-the-Art Plankton Monitoring

    Lead California Department of Water Resource [DWR]
    Description The purpose of this project is to use the new imaging-in-flow instrument FlowCAM to rapidly and automatically identify, enumerate and estimate biomass for in situ and laboratory phytoplankton and zooplankton species composition samples in the SF Estuary.
    Science topics Phytoplankton, Zooplankton
    Updated April 29, 2022
  • Title

    A Non-Point Source of Contaminants to the Estuarine Food Web: Mobilized Particles from the Intertidal Zone

    Lead California State University [CSU]
    Description The purpose of this research project is to quantify the process of contaminant concentration and resuspension of shallow and intertidal cohesive sediments at sites along the salinity gradient from Prospect Island to San Pablo Bay. This research is important because it helps to understand the pathways by which contaminants are assimilated, which is essential to appropriately manage habitat areas.
    Science topics None specified
    Updated April 29, 2022
  • Title

    Estimating Juvenile Chinook Salmon Spring and Winter Run bundance at Chipps Island

    Lead U.S. Fish and Wildlife Service [USFWS]
    Description The purpose of this project will develop and implement a DNA sampling protocol for juvenile Chinook salmon captured at Chipps Island.
    Science topics Chinook Salmon
    Updated April 29, 2022
  • Title

    Analysis of Archived Samples to Assess Patterns of Historic Invasive Bivalve Biomass

    Lead California Department of Water Resource [DWR]
    Description The purpose of this project is to provide information regarding the effect of bivalves in restored habitat by assessing patterns of invasive bivalve biomass. This research is important because these bivalves are invasive and dominant in the upper SF Bay-Delta system, which are considered to be a major sink of primary productivity in the system.
    Science topics Bivalve
    Updated April 29, 2022
  • Title

    A Statistical Model of Central Valley Chinook Incorporating Uncertainty

    Lead R2 Resource Consultants Inc.
    Description The purpose of this project is to develop a statistical modeling approach to the two Central Valley Chinook Salmon species that incorporates mortality in all phases of salmon life history, and includes the effects of uncertainty in assessing population status, guiding future research, and making management decisions.
    Science topics Chinook Salmon
    Updated April 29, 2022
  • Title

    Quantifying Factors Affecting Migration Routing and Survival of Juvenile Late-Fall Chinook Salmon in the Sacramento-San Joaquin River Delta

    Lead U.S. Geological Survey [USGS]
    Description Juvenile Chinook salmon emigrating from natal tributaries of the Sacramento River must negotiate the Sacramento-San Joaquin River Delta where they disperse among the Delta's complex channel network. Natural processes and water management actions affect the fraction of the population using different migration routes through the Delta and survival within those routes, but quantifying these relationships has proven difficult. Since 2006, acoustic telemetry techniques have been used to quantify both movement among migration routes and survival within routes, providing the first insights into how route-specific survival contributes to population-level survival in the Delta. In this project, we propose to use existing acoustic telemetry data from multiple sources to 1) Quantify factors affecting migration routing of juvenile salmon emigrating from the Sacramento River, 2) Quantify factors affecting survival of juvenile salmon within specific migration routes, and 3) Simulate population-level survival through the Delta under a limited number of historical and operational scenarios. Collating telemetry data from multiple sources over numerous years offers a unique opportunity to identify important relationships that might otherwise be difficult to detect for any particular study in a given year. Quantifying such relationships is critical to informing resource management that seeks to balance use of water resources with recovery of endangered salmon populations.
    Science topics Chinook Salmon
    Updated April 29, 2022
  • Title

    Impact of Urbanization on Chinook Salmon, Steelhead Trout, and Their Prey: a Case Study of the American River

    Lead University of California - Berkeley [UC Berkeley]
    Description The American River provides spawning/rearing habitat for Chinook salmon and steelhead, yet passes through 30 miles of dense urban development. Urban runoff contains pyrethroid insecticides that cause the river to become toxic to standard testing species with every storm event. This study will go beyond observed toxicity, and address toxicity to chironomids, caddisflies, and mayflies, key diet components of juvenile fish in the river. A bioenergetic model will be used to evaluate effects of food web changes on young salmonids. Our key approach is the use of river-side systems with flowing river water that allow us to replicate realistic pesticide exposures, while controlling other variables. We will determine sensitivity to pyrethroids and fipronil of salmonid prey taxa, and expose them, as well as standard testing species, in the flow-through systems through six storm events. We will maintain experimental streams containing riverine benthic invertebrate communities, and measure response to the pyrethroid pulses. To supplement analyses of the indirect, food web-mediated effects, we will measure endocrine effects through vitellogenin induction in salmon and steelhead. Finally, one treatment includes river water from which organic contaminants have been removed by activated charcoal, to help establish cause of toxicity. The goal is to determine if known toxicity in the American River is a threat to benthic invertebrates and, through the food web, to salmon and steelhead.
    Science topics Chinook Salmon, Steelhead Trout, Above-highwater refugia, Other discharge contaminants, Food webs
    Updated April 29, 2022
  • Title

    Habitat Values of Native SAV [Submerged Aquatic Vegetation] in the Low Salinity Zone of San Francisco Estuary

    Lead San Francisco State University [SFSU]
    Description We will investigate the importance of native submerged aquatic vegetation (SAV) in providing food web support for native fish species in the low salinity zone of the San Francisco Bay-Delta. These SAV beds, composed primarily of Stuckenia pectinata (sago pondweed), are an extensive feature along many of the islands in Suisun Bay and the west Delta, yet almost nothing is known of their seasonal or interannual patterns, their invertebrate communities, or how their physical structure or food resources influence use by native fishes. We hypothesize that the position of these beds in the shallow subtidal zone along the islands increases habitat options adjacent to wetlands and channels for numerous fish species, including species of concern such as delta smelt and chinook salmon. The objectives of this project are to: 1) characterize patterns in habitat structure, community composition, and productivity of SAV beds in four locations in Suisun Bay and the western Delta over a three year period (with comparisons to non-native Egeria densa beds), 2) document the epifaunal invertebrate community composition and abundance in the Stuckenia beds, 3) assess fish use of these beds through seining and acoustic monitoring of hatchery-tagged fish, 4) utilize stable isotope analyses to evaluate food web relationships within and among the beds, and 5) begin preliminary evaluation of the potential to restore native SAV to subsided lands in this region.
    Science topics Chinook Salmon, Green sturgeon, White Sturgeon, Sacramento Splittail, Delta Smelt, Steelhead Trout
    Updated April 29, 2022
  • Title

    Physiological Mechanisms of Environmental tolerance in Delta Smelt [Hypomesus transpacificus]: From Molecules to Adverse Outcomes

    Lead University of California - Davis [UC Davis]
    Description The proposed project directly addresses priority research detailed by the Delta Science Program to protect native fishes that depend on the Bay-Delta system focusing on adaptations to local habitats and physiological tolerances to key environmental stressors;in delta smelt (Hypomesus transpacificus). Temperature and salinity changes associated with anthropogenic climate change are likely to further exacerbate delta smelt population declines. We hypothesize that delta smelt tolerance to forecasted temperature rises and salinity intrusions into the Bay-Delta system can be assessed at a mechanistic level, and that acclimation thresholds can be established by means of genomic responses. This proposal builds upon successful development of a cDNA microarray for delta smelt containing approximately 2000 individual gene fragments, and the subsequent application of biomarkers for assessing the effects of chemical stressors on larval development with links to swimming behavior. We propose to develop a Next Generation oligonucleotide microarray in delta smelt, with ca. 15K genes, in order to assess mechanistic tolerance to changes in gemperature and salinity. Genomic studies will be conducted integrating effects on energetic activity and swimming performance studies, in an interdisciplinary approach that will permit the establishment of links between tolerance mechanisms and adverse outcomes.
    Science topics Delta Smelt, Water temperature, Salinity, Turbidity
    Updated April 29, 2022
  • Title

    Nutritional Quality of Zooplankton as Prey for Fish in the Sacramento-San Joaquin Dalta

    Lead University of California - Davis [UC Davis]
    Description Primary consumers (zooplankton) are a critical trophic link for energy transfer to upper trophic levels and a key food source for threatened and endangered fish species in the Delta. The zooplankton community was shaped by large spatial and temporal changes in both abundances and species composition that affected quantity of zooplankton carbon. It is also expected that taxonomic shifts affected quality of zooplankton carbon for fish due to altering biomass transfer at the base of the food web that can profoundly influence nutritional quality and population dynamics at higher trophic levels. Yet the biochemical composition of plankton remains largely unstudied in this system despite the fact that the importance of zooplankton nutritional quality for fish is one potential major component for the long-term decline and more recent collapse of pelagic fish species. The proposed research aims to measure essential nutritional status (stoichiometry, fatty acids, sterols) for zooplankton taxa and will calculate food-quality indices for fish. On the basis of nutritional plankton and biomass values, spatial patterns as well as long-term and recent changes in plankton quality associated with compositional shifts will be estimated. We propose that through integrating plankton food-quality into the management and restoration plan for the Delta, the dynamics of the ecosystem can be viewed from a new perspective that has key implications for understanding the decline in pelagic organisms.
    Science topics Zooplankton
    Updated April 29, 2022
  • Title

    Foodweb Support for the Threatened Delta Smelt and Other Estuarine Fishes in Suisun Bay and the Western Sacramento-San Joaquin Delta

    Lead San Francisco State University [SFSU]
    Description The purpose of the project is to increase understanding of the foodweb supporting delta smelt and other estuarine species. This research is important because: 1) it could lead to increased foodweb support for the threatened delta smelt and 2) identify potential mechanisms underlying relationships of abundance or survival of some fish to freshwater flow.
    Science topics Delta Smelt
    Updated April 29, 2022
  • Title

    An Open-Source, Three-Dimensional Unstructured-Grid Model of the Sacramento/San Joaquin Delta: Model Construction and Application to Delta Hydrodynamics and Temperature Variability

    Lead Stanford University
    Description Motivated by the need to predict transport in the Delta, this project will apply the open-source, unstructured-grid computer model, SUNTANS (Stanford Unstructured Nonhydrostatic Terrain following Adaptive Navier Stokes simulator) to the Sacramento/San Joaquin Delta. SUNTANS solves the governing equations of fluid flow on a grid that permits fine detail in areas of particular interest in the Delta, while allowing us to include the entirety of the Bay/Delta system so as to properly model oceanic and estuarine influences on the Delta We have two aims:(1) to carry out the model development needed to apply SUNTANS to the Delta;(2) to apply the model to look at aspects of the physical variability of the Delta that are critical to ecosystem function and to understanding how physical processes in the Delta affect ecosystem function, most notably entrainment of fish and other organisms by the export facilities. In particular, we propose to look at flow behavior at channel junctions, a key aspect of Delta hydrodynamics that influences dispersion in the Delta and thus the transport of biota, nutrients and contaminants. We also will examine the dynamics of spatial and temperature variability in the Delta in response to tides, atmospheric forcing, river flows, and diversions, variability that must be properly calculated to forecast how climate change and altered project operations may affect key species like Delta Smelt. We will carry out new fieldwork to support our modeling.
    Science topics Water temperature
    Updated April 29, 2022
  • Title

    Integrating Ecosystems, Flood Control, Agriculture, and Water Supply Benefits: An Application to the Yolo Bypass

    Lead University of California - Davis [UC Davis]
    Description The Yolo Bypass presents an opportunity to develop mechanisms governing the management of flows across floodplains that balance ecosystem services with economic and recreational functions, and to study the untapped potential of such floodplains to play a role in conjunctive surface and groundwater management. Analysis to the necessary high degree of spatial resolution for such management decisions is generally lacking for the Yolo Bypass. This proposal seeks funding for an interdisciplinary study to better understand the economic, hydrologic, and ecological functioning of land and water across the bypass, and to develop tools that use this knowledge in identifying promising strategies for the timing and configuration of spring inundation. Agronomic, economic, and hydraulic models will be used with formal interviews to study the relationship between flooding and six Yolo Bypass functions: (1) Agricultural Economics, (2) Waterfowl management, (3) Native Fish habitat, (4) Flood Control, (5) Groundwater storage, and (6) Recreation. Data from these first efforts will be incorporated into an optimization model that identifies promising inundation alternatives for ecosystem services which minimize costs to landowners and waterfowl managers, and maximize potential conjunctive use benefits. This synthesis answers the Delta Science Program's request for coupled hydrologic and ecosystem models, and for water and ecosystem management decision support system development.
    Science topics None specified
    Updated April 29, 2022
  • Title

    CASCaDE II: Computational Asessments of Scenarios of Change for the Delta Ecosystem

    Lead U.S. Geological Survey [USGS]
    Description This proposal builds upon an existing model-based effort to develop a holistic view of the Bay-Delta-River-Watershed system. CASCaDE I developed a set of linked models to assess Delta ecosystem response to climate change. In CASCaDE II, we propose to refine and extend those modeling capabilities to assess Delta ecosystem response to changes in climate and physical configuration. With a new state-of-the-art hydrodynamic and sediment model at its core, CASCaDE II will link models of climate, hydrology, hydrodynamics, sediment, geomorphology, phytoplankton, bivalves, contaminants, marsh accretion, and fish. Our goals are to apply these linked models to 1) better understand Delta ecosystem function, 2) assess possible futures of the Delta under scenarios of climate and structural change, and 3) provide science-based information to support the DSC in its co-equal goals of water supply and ecosystem protection. The tools developed will provide an objective basis for anticipating and diagnosing Delta ecosystem responses to planned and unplanned changes. Experiments using the linked models are designed to address questions such as: How will climate change, together with new conveyance structures or increased flooded island habitat, alter water flow and drinking water quality? With projected changes in residence time, turbidity, temperature, and salinity, how will primary productivity, invasive bivalves, marsh processes, contaminant dynamics, and fish populations respond?
    Science topics None specified
    Updated April 29, 2022
  • Title

    Life History Variation in Steelhead Trout and the Implications for Water Management

    Lead University of California - Santa Cruz [UCSC]
    Description The purpose of this project is to explore the ways in which different stream hydrology and temperature can affect the growth and maturation of steelhead trout. Model examination will incude various stream flow management regimes may affect trout population dynamics region-wide.
    Science topics Steelhead Trout
    Updated April 29, 2022
  • Title

    CASCaDE: Computational Asessments of Scenarios of Change for the Delta Ecosystem

    Lead U.S. Geological Survey [USGS]
    Description Agencies of the CALFED Bay-Delta Authority (CBDA) face tough decisions as they search for strategies to meet their programmatic goals of stabilizing water supplies in California, providing safe drinking water to a growing population, and sustaining diverse populations of native species and their supporting ecosystem functions. The challenge of finding balanced solutions to these goals is daunting because of the enormous complexity of the San Francisco Bay-Delta system and its tributary rivers and their watersheds. The challenge grows as we consider the additional layer of complexity imposed by the certainty that all the key forces that drive dynamics of this ecosystem (climate, hydrology, water management, land use, sea level) will change significantly in future decades. This proposal describes a model-based approach for developing a long view of the Bay-Delta-River-Watershed system. The long view will be developed through simulations with linked models to project changes under a range of plausible scenarios of global warming, hydrologic responses, land-use change, reconfigurations of within-Delta habitats, and sea level rise. Our goals are to develop and apply a model-based approach of ecological forecasting to project future states of the Delta ecosystem under prescribed scenarios of change, and to communicate the outcomes of those scenarios to resource managers facing the daunting challenge of meeting CBDP goals in a continually changing world.
    Science topics None specified
    Updated November 18, 2022
  • Title

    Understanding the Scale and Mechanisms of Connectivity between Splittail Populations and the Implications for Management

    Lead U.S. Bureau of Reclamation [USBR]
    Description Our proposal seeks to add four elements, telemetry, genetics, physiology, and modeling, to an existing research effort on splittail. The study addresses the hypothesis that there is no difference in population dynamics between the two distinct splittail populations. To address this hypothesis we are conducting a collaborative, interdisciplinary study that includes an intensive field effort combined with state-of-the-art laboratory tools that can determine the natal origins, historical habitat use, feeding, and general health of adult splittail. With this proposal we seek to leverage additional funds that were not previously available to add the four new elements. The telemetry component will take advantage of the expansive existing array of receivers deployed in the estuary to evaluate the movements and migration of splittail. The genetic component will provide a precise means to assign individuals to their respective population, determine sex ratios, and to estimate the effective size of the populations. The physiology component will determine if the newly discovered Petaluma/Napa population of splittail exhibits different requirements and tolerances than the Central Valley population. The modeling component will apply the cumulative information gained by the overall study to evaluate the sensitivity of splittail persistence to demographic variability in population dynamics. This work will directly address the Priority Research Topics presented in the PSP.
    Science topics Sacramento Splittail
    Updated April 29, 2022
  • Title

    Survivial and Migratory Pattern of Central Valley Juvenile Salmonids

    Lead University of California - Davis [UC Davis]
    Description The purpose of this project is to determine the survival and movement patterns of late-fall Chinook salmon smolts and steelhead smolts as they migrate downstream. This information is important to better understand how salmon move through the system.
    Science topics None specified
    Updated April 29, 2022
  • Title

    Understanding the Effects Of Nutrient Forms, Nutrient Ratios and Light Availability on the Lower Food Web of the Delta

    Lead University of Maryland - Center for Environmental Science
    Description This proposed study addresses how changes in nutrient form, ratio and loading (water quality) affect the lower pelagic food web that ultimately determines the quality and quantity of food for Delta fishes. Shifts in algal composition and food availability have been implicated in fish decline, but identifying the changes at the base of the food web that are linked to changes in nutrients has been difficult because of the complexity of factors contributing to stress on the food web. Nutrients may shape community composition in complex ways;they do not have to be limiting to be important drivers of plankton communities. Elevated nutrients, particularly chemically reduced forms of nitrogen (N), may be inhibitory rather than stimulatory. We hypothesize that when NO3- is proportionately abundant relative to NH4+ (and the N:P ratio is suitable), diatoms will dominate, but when NH4+ is proportionately abundant, cyanobacteria or flagellates will dominate. Reduced light availability will lead to communities with higher bacterial abundance, and/or higher proportions of flagellates able to alter their nutrition towards mixotrophy. This proposal will directly test these relationships by conducting experimental manipulations with different ambient communities from different sites and seasons. Data will be interpreted with respect to the long-term trends reported for the Bay Delta and supplied as an integrated product for management efforts concerned with water quality and fisheries.
    Science topics Nutrients, Food webs
    Updated April 29, 2022
  • Title

    A Multi-Stock Population Dynamics Framework for the Recovery of Sacramento River Chinook Salmon

    Lead University of Washington [UW]
    Description The purpose of this project is to construct a multi-stock salmon population model and management strategy evaluation (MSE) tool that addresses the cross-linkages between water use and fishery ecosystem response. Recent federal court judgment concluded that insufficient evidence was provided for prescribing specific flow restrictions in two recent conservation measures. The inability to provide adequate evidence was a byproduct of not having the correct quantitative tools at hand. We propose to build these tools by furthering technological developments of previous analyses of Central Valley Chinook population dynamics. Specifically, our work will integrate multiple salmon populations together into a single model that can reconstruct historical population dynamics such that environmental conditions and water resource use can be used as predictors of biological responses of multiple populations. Our goal is to integrate populations into a single model so that the effect of water management and fishery management policies can be examined in light of all fish populations simultaneously. This pertains to the biological interactions between the populations as well as the way in which fisheries impact individual populations depending on growth and maturation rate of each population. All analysis will be framed in the context of historical and proposed water use patterns.
    Science topics Flows
    Updated April 29, 2022
  • Title

    Linking Trophic Ecology with Slough and Wetland Hydrodynamics, Food Web Production and Fish Abundance in Suisun Marsh

    Lead University of California - Davis [UC Davis]
    Description Suisun Marsh remains one of the most productive regions of the San Francisco Estuary (SFE), fueling interest in the Marsh as a model for restoring estuarine function to the region in the future. The UC Davis Suisun Marsh Fish Survey has 30 years of data on physical structure, water quality, benthic and pelagic invertebrates and fish. We will use these and other data to explore patterns of fish abundance in relation to zooplankton, slough geomorphology, and regional hydrodynamics. Our goal is to understand and predict the kinds of physical variability and structure that create attractive habitat for fish, in order to 1) serve as a template for wetland and subtidal habitat restoration in the Estuary and 2) anticipate the effects of sea level rise, levee failure and salinity increases that are expected to have a large impact on the Marsh in the near future. A comprehensive literature and data search will pull together known information for synthesis. Cluster analysis will identify slough complexes into types of functional habitat. Predictive maximum likelihood, hierarchical and multivariate autoregressive models will be used to predict how foodwebs and fish respond to environmental factors. Finally, coupled hydrodynamic-life history models for zooplankton will demonstrate how production is regulated by slough morphology. Results will be integrated as a white paper on the history, current functioning, and future of the Marsh.
    Science topics Levees, Climate change
    Updated April 29, 2022
  • Title

    The Role of Microcystis Blooms in the Delta Foodweb: A Functional Approach

    Lead San Francisco State University [SFSU]
    Description We propose a collaborative investigation of blooms of the toxic, cyanobacteria Microcystis in the San Francisco Estuary Delta including how blooms develop, identification of toxic species and strains, controls on toxin production, and foodweb effects. The research will address Delta Science Program Priority Research Topic 2 and Research Topic 5 in the CALFED-funded analysis of ammonium issues in the Estuary. The appearance of Microcystis in the Delta was coincident with the POD, suggesting a link. The spatial and temporal scales of Microcystis blooms was identified with their environmental covariates but a mechanistic analysis of the conditions that distinguish bloom periods and locations, which are critical for ecosystem modeling and management, are still lacking. Our objectives are to determine: 1- the biotic and abiotic factors controlling Microcystis bloom formation and toxin production;2- how Microcystis strains and microbial associations influence toxicity;3- the role of Microcystis in the Delta pelagic food web and its effect on the POD through zooplankton grazing. Our 3-year work plan comprises 2 years of laboratory and field work (contrasting bloom and non bloom locations). Experiments will be conducted to determine mechanisms driving observed in situ patterns. We will synthesize the results and clarify the environmental-bloom-food web effects in a useable format for management efforts aimed towards water supply, fisheries and recreational use of the Delta.
    Science topics Harmful algal blooms HAB
    Updated April 29, 2022
  • Title

    Phytoplankton Communities in the San Francisco Estuary: Monitoring and Management using a Submersible Spectrofluorometer

    Lead California Department of Water Resource [DWR]
    Description The purpose of this project is to evaluate a new submersible spectrofluorometer, the bbe FluoroProbe, for phytoplankton monitoring and management in the SFE. Secondly, this project seeks to investigate high-frequency patterns in spatial phytoplankton group distributions among Delta habitats and along gradients from the western Delta and northern San Francisco Bay.
    Science topics None specified
    Updated April 29, 2022
  • Title

    Modeling the Delta Smelt Population of the San Francisco Estuary

    Lead San Francisco State University [SFSU]
    Description The purpose of this project is to develop an individual-based particle-tracking model examining population behavior of Delta smelt under different scenarios.
    Science topics Delta Smelt
    Updated April 29, 2022
  • Title

    Biomass and Toxicity of a Newly Established Bloom of the Cyanobacteria Microcystis aeruginosa and its Potential Impact on Beneficial Use in the Sacramento-San Joaquin Delta

    Lead California Department of Water Resource [DWR]
    Description Monitoring and simple analysis of the extent of this cyanobacteria in the Delta, and preliminary exploration of the impacts of cystins on drinking water quality, and human and wildlife health.
    Science topics None specified
    Updated April 29, 2022
  • Title

    Fish Diet and Condition

    Lead California Department of Fish and Wildlife [CDFW]
    Description Description The Diet and Condition study has provided information on the food habits of pelagic fishes in the estuary since 2005. We focus on the temporal and spatial differences in diet composition and feeding success of Delta Smelt, Striped Bass, Threadfin Shad, Longfin Smelt, Mississippi Silversides, and American Shad. Need Data from this project has been used to inform the Fall Low Salinity Habitat Program (FLaSH), Directed Outflow Project (DOP), and Management, Analysis and Synthesis Team reports, as well as life history models used for the conservation of fish and their habitats. Understanding what prey are utilized for food in the context of available prey, with the associated body-condition of fish, helps clarify the existence and timing of food limitation for young pelagic fish in the estuary. This work began as part of the Pelagic Organism Decline investigations and continued as a contributor to FLaSH investigations during which we in collaborated with the Fish Health Monitoring Project. Recently staff completed Longfin Smelt diet investigations as part element #296 (Longfin Smelt Investigations – in response to a litigation agreement) that will also contribute to the Longfin Smelt Conceptual Model and Synthesis effort (element #320). Finally, we will process Delta Smelt diets from investigations prompted by the Delta Smelt Resilience Strategy, and as part of the DOP. Objectives 1. What are the diets of pelagic fishes (especially Delta Smelt and Longfin Smelt) in the estuary and do they vary regionally or temporally? 2. Is there evidence of reduced feeding success spatially or temporally in the estuary? 3. Is feeding success associated with changes in relative weight or condition of fish? 4. Is there seasonal and regional overlap of diets between species (with a focus on age-0 Delta Smelt, Longfin Smelt, Striped Bass, Prickly Sculpin, Pacific Herring, and Threadfin Shad)?
    Science topics None specified
    Updated April 29, 2022
  • Title

    Aquatic Habitat Sampling Platform: Standardized Fish Community Sampling Across Habitat Types

    Lead U.S. Bureau of Reclamation [USBR]
    Description Description The Aquatic Habitat Sampling Platform (AHSP) is an integrated aquatic species and habitat sampling system that can effectively monitor aquatic organisms and reveal habitat associations while having minimal or no “take” of sensitive species. Further development and deployment of the AHSP will expand data collection to shallow and off-channel habitat, while offering the capability to transition to deeper and open water habitats, providing reliable sampling efficiency estimates (e.g., probability fish detection) and “catch” per unit effort (i.e., number of individual species per volume of water sampled) and improving our knowledge about populations, habitat associations and major stressors of key organisms within the San Francisco Estuary (Estuary). Need Within the Estuary, numerous monitoring techniques are used. However, monitoring weaknesses for determining fish status and trends include: 1) restricted locations available for some techniques;2) limited ability to simultaneously assess zooplankton and fish larvae;and 3) difficulty in estimating fish population size due to lack of gear efficiency information (Honey et al. 2004). Furthermore, past attempts at integrated abundance indices from more than one sampling method have had limited success. Although there continues to be considerable collaborative monitoring and research devoted to understanding Central Valley fish species, coordination among activities has been difficult. Other issues include permitting take of listed species and time-consuming monitoring with extended periods of down time due to sample post-processing of fish and invertebrate species. Identification of key microhabitats for each lifestage and attributes and linking associated physical parameters such as habitat features (e.g., depth, structure, channel type) and water quality is needed. Objectives • Test AHSP operation within the Estuary while providing information highly relevant to pressing Delta management issues (IEP 2016); • Provide detailed information on distribution and approximate abundance of adult Delta Smelt within identified habitat types (Biological Opinion on the Long-Term Operational Criteria and Plan for coordination of the Central Valley Project and State Water Project;https://www.fws.gov/sfbaydelta/documents/SWPCVP_OPs_BO_12-15_final_OCR.pdf);and • Assess habitat associations and diurnal behavior of Delta Smelt and other fishes (Durand 2015).
    Science topics Delta Smelt
    Updated April 29, 2022
  • Title

    Central Valley Salmonid Coordinated Genetic Monitoring [Year 4]

    Lead U.S. Bureau of Reclamation [USBR]
    Description Description This work will include tasks to rapidly identify winter-run Chinook juvenile salmon at the CVP/SWP salvage facilities, process juvenile salmonid tissues from various CVPIA and IEP fish monitoring stations, and support coordination of genetic monitoring across the CVP and SJRRP programs. PIs: Josh Israel (USBR);Scott Blankenship (Cramer Fish Science);Ken Bannister (USFWS);John Carlos Garza (NOAA-Fisheries);Brett Harvey (DWR);Noble Hendrix (QEDA);Rachel Johnson (NOAA-Fisheries);Mariah Meek (UC Davis);Kevin Reece (DWR) Need This study is needed due to the limited accuracy of Lenght at Date stock identification. Inaccurate identification of Chinook salmon is problematic because it compromises the management value of data collected from standard monitoring programs. This project will improve the science and management value of the Central Valley salmon monitoring network, supported through IEP and Central Valley Project Improvement Act (CVPIA) monitoring stations, by accurately determining stock identification of multiple Chinook salmon stocks across their distribution. Classification tables will be developed to characterize monthly and seasonal accuracy between length-at-date and genetic race assignment at IEP and BiOp monitoring locations. This multi-year dataset will be used to evaluate the likelihood of accurate assignment and potential biophysical explanatory variables influencing genetic accuracy. Objectives Improve accuracy of CVPIA and IEP monitoring programs by providing genetic stock identification information for tissues collected from Red Bluff, Knights Landing, DJFMP, salvage facilities and San Joaquin River fish monitoring stations. Samples will be collected from all four runs of Chinook salmon based on length-at-date (i.e., samples will be collected from Chinook of various sizes throughout the sampling period).
    Science topics Chinook Salmon
    Updated April 29, 2022
  • Title

    Enhanced Acoustic Tagging, Analysis, and Real-Time Monitoring

    Lead National Oceanic and Atmospheric Administration [NOAA]
    Description Description This project tracks the movement and survival of wild and hatchery juvenile Chinook salmon with a large acoustic receiver network (JSATS), including real-time receivers, and the development of real-time metrics and retrospective modeling of juvenile salmon migration data. Need There is a well-documented need for improved detection and associated modeling of salmon migration and survival in the Central Valley. Understanding salmon survival and movement dynamics in the Delta and its tributaries is critical to the operation of state and federal water projects, recovery of ESA-listed species, and sport and commercial fisheries management. Objectives • Maintain 20 real-time JSATS receivers: will provide information on migrating salmon smolt location and timing of Delta entry and exist, which is key for informing time-sensitive decisions • Deployment of autonomous JSATS receiver array: this will provide fine-scale reach-specific survival and movement rates • Development of new metrics for the real-time data: this will inform key management relevant questions, such how many fish are entrained at critical junctions • Development of real-time website to convey movement and survival rates of acoustic tagged juvenile salmonids at various real-time locations in the Sacramento River and Delta.
    Science topics Salmon migration
    Updated April 29, 2022
  • Title

    Suisun Marsh Salinity Control Gate Study

    Lead California Department of Water Resource [DWR]
    Description Description Suisun Bay and Marsh are a key part of the habitat for Delta Smelt, but during drier periods such as summer, Delta Smelt may be at least partially excluded from Suisun Marsh due to high salinities. The purpose of this proposal is to provide scientific support a management action for Smelt, operation of the Suisun Marsh Salinity Control Gates (SMSCG). This facility is currently to tidally pump water into the Marsh to improve fall and winter habitat conditions for waterfowl, but could also provide a tool to manage aquatic habitat for Delta Smelt in other periods. Specifically, by using the SMSCG to direct more fresh water in Suisun Marsh, our prediction is that reduced salinities will improve habitat conditions for Delta Smelt in the region. Need The status of Delta Smelt is dire. As part of the Resources Agency's Delta Smelt Resiliency Strategy, in August 2018 we conducted pilot operations of the SMSCG to support Delta Smelt , with promising results. Based on this early success, we expect that the SMSCG will be used as a seasonal tool to support Delta Smelt in summer-fall in coming years as part of the coming FWS Biological Opinion and DFW ITP. Neither has been completed, but SMSCG operations for fish are expected to be required in each. Hence, the proposed study is intended to provide a scientific evaluation and guidance for an expected SMSCG action in 2020. Objectives The primary objective of this project is to evaluate the effectiveness of the SMSCG action. Questions to be addressed include: • Did the action improve habitat conditions for Delta Smelt in the Suisun Region? • Does the Suisun Region typically have better habitat and food web conditions than the upstream River Region? • Do Delta Smelt respond favorably to the SMSCG flow action? • Does operation of the SMSCG affect other fishes and clams?
    Science topics Salinity
    Updated April 29, 2022
  • Title

    Physiological and Behavioral Effects of Domestication on Delta Smelt

    Lead California Department of Water Resource [DWR]
    Description Description Due to the continued population decline of Delta Smelt and the threat of extinction, conservation efforts may include future supplementation practices using the refuge population of Delta Smelt at the Fish Conservation and Culture Laboratory (FCCL) in Byron, CA to assist in maintaining the wild population. Prior to any supplementation planning, it is first critical to determine if Delta Smelt with varying levels of domestication indices (i.e. level of hatchery ancestry) respond differently, both physiologically and behaviorally, to various habitat conditions. This project aims to provide a better understanding of the effects of domestication on captive Delta Smelt (Hypomesus transpacificus) by assessing the refuge population at the FCCL. Three studies will be conducted exploring if domestication index (i.e. the level of hatchery ancestry) affects the physiological and behavioral performance of Delta Smelt in response to physical handling and climate change stressors. Need Physiological and behavioral changes of hatchery fish due to domestication could lead to unintended detrimental effects in the wild;therefore, research characterizing the alterations of hatchery Delta Smelt across levels of domestication indices are warranted to understand the effects of captivity and how they might shape future supplementation and conservation strategies. For example, identification of differences among groups of Delta Smelt with varied domestication index may create the need for domestication management and the implementation of altered hatchery practices. This project will provide relevant and timely information for conservation managers and adaptive restoration strategies and dovetail with the recommendations from the 2017 Delta Smelt Supplementation Workshop. As such, this study is included in the supplementation studies work plan which came out of that workshop. Specifically, this project fits within two topics in the IEP Science Strategy: Effects of Climate Change and Extreme Events and Restoring Native Species and Communities. Objectives 1. To characterize domestication effects on hatchery Delta Smelt by synthesizing existing/historical datasets on growth and reproduction of fish at the FCCL since the start of the hatchery program. 2. To identify the impacts of domestication index on the physiological stress response of Delta Smelt following handling stress. 3. To determine the effects of domestication index on individual and group swimming behavior, responses to predation, and responses within the context of climate change factors including warming and increased salinity.
    Science topics Delta Smelt
    Updated April 29, 2022
  • Title

    Developing an eDNA metabarcoding protocol to improve fish and mussel monitoring in the San Francisco Estuary

    Lead National Oceanic and Atmospheric Administration [NOAA]
    Description Description We propose to develop an eDNA metabarcoding protocol to complement existing IEP monitoring surveys and assess the effects of management activities such as habitat restoration or flow alteration. We will develop a reference sequence database for native and invasive fish, mussels, and other macroinvertebrates present in the San Francisco Estuary (SFE). We will optimize a molecular and computational pipeline for metabarcoding and ground truth the method against three SFE monitoring efforts, each using different sampling gear. We will investigate the relationship between eDNA sequence read count and fish biomass or abundance (EDSM survey). Finally, we will determine the ability of metabarcoding to detect fish and macroinvertebrate assemblages across large and small spatial scales and over time. Need Our overarching goal is to develop a non-invasive, low cost monitoring tool that can be used in conjunction with existing IEP monitoring programs or used alone to assess biological community composition at locations of interest in the SFE. This proposal is related to the 2020 – 2024 IEP Science Strategy by creating a new monitoring tool that can assist in two main areas: 1) Restoring Bay-Delta native fishes and community interactions and 2) assessing effects of flow alteration on Bay-delta aquatic resources. Broadly, this study will inform management decisions by supporting and augmenting existing monitoring surveys in the SFE. It will also lead to a richer and more complete understanding of SFE ecology. This study is not explicitly required by law or agreement, and to our knowledge is neither a recommended action nor a result from an IEP review or synthesis effort. Objectives Objective 1: Develop robust molecular methods and a computational pipeline for detection of SFE fish and macroinvertebrates by eDNA metabarcoding of water samples. Objective 2: Compare eDNA metabarcoding head-to-head with existing and historical monitoring data from three ongoing ecological surveys using diverse conventional sampling gear and evaluate accuracy of fish abundance and biomass estimates from eDNA metabarcoding data. Objective 3: Evaluate factors that influence eDNA detection of species of interest (e.g. rare or invasive species) and suites of species (e.g. benthic fishes and invertebrates) on two spatial scales, within and between habitats, along with temporal variation.
    Science topics Fish
    Updated April 29, 2022
  • Title

    Predation Dynamics Across Reach-Specific Gradients in Juvenile Salmon Survival

    Lead U.S. Geological Survey [USGS]
    Description Description The overarching goal of this project is to determine if predation by piscivorous fishes is an important explanatory driver of survival of juvenile Chinook Salmon emigrating through the north Delta. To achieve this goal, we seek to determine if variation in reach-specific characteristics of predation dynamics covary with survival of acoustictagged juvenile Chinook Salmon collected during the study period. This will be accomplished by comparing reach-specific characteristics of the piscivore community and its observed and modeled consumption of juvenile Chinook Salmon across a range of environmental conditions. Need This is not a mandated study but it addresses an important research need. Objectives • How does the piscivore community (species composition, size structure, and abundance) vary across specific migratory pathways (river reaches) in the North Delta? • To what extent do environmental conditions (e.g., water temperature, turbidity, and discharge) control the consumption of juvenile Chinook Salmon? • Do characteristics of the predator community explain variation in survival of acoustic tagged salmon collected during the study period?
    Science topics Predation
    Updated April 29, 2022
  • Title

    Directed Field Collections

    Lead California Department of Fish and Wildlife [CDFW]
    Description Description The Direct Field Collections element (-089) provides funding support for expanded field collections, allowing CDFW to provide other, IEP-approved researchers access to research-capable boats and experienced operators, and thus the ability to safely sample the upper San Francisco Estuary. This element most recently facilitated investigations associated with the Fall Low Salinity Habitat (FLaSH) project and the Directed Outflow Project (DOP). Need This element allows CDFW and thus IEP to provide boat and operator time to assist collaborating researchers leading approved IEP projects with “on-the-water” sampling. There is no mandate for this element. Objectives To provide CDFW operational flexibility to assist collaborating researchers leading approved IEP projects with access to CDFW boat operators and boats to complete "onthe-water" sampling.
    Science topics None specified
    Updated April 29, 2022
  • Title

    North Delta Flow Action: Role of Improved Yolo Bypass Flows on Delta Food Web Dynamics

    Lead California Department of Water Resource [DWR]
    Description Description In a collaborative effort between CA Department of Water Resources, US Bureau of Reclamation, CA Department of Fish and Wildlife, United States Geological Survey, San Francisco State University, and UC Davis, this study will investigate the role of augmented summer and fall flows in the Yolo Bypass and North Delta areas on lower trophic food web dynamics and the benefits to listed fish species. Using both continuous and discrete sampling approaches, this study will relate hydrologic patterns to chlorophyll-a, nutrients and primary productivity, plankton densities and composition (phytoplankton and zooplankton), contaminant concentrations, as well as water quality parameters such as electrical conductivity, turbidity, temperature, and dissolved oxygen. In addition, caged hatchery Delta Smelt will be monitored to determine the effects of the managed flow action and increased food web productivity on fish survival, growth, and behavior. Need Due to the food-limited nature of the San Francisco Estuary, it is critical to understand mechanisms that result in successful food web productivity including phytoplankton blooms. Food limitation is one of the primary hypothesized causes of the Pelagic Organism Decline. In 2011 and 2012 there was evidence that a moderate Yolo Bypass flow pulse during fall agricultural drainage periods was followed by phytoplankton blooms in the lower Sacramento River. Managed flow actions in the following years showed an increase in food web productivity could be repeated;however, results varied across years and flow actions indicating more research is warranted to understand correlations between flow and abiotic conditions, and the biological response of the food web. The increases of summer/fall flows in North Delta, has been considered a management strategy as part of complying with USFWS Delta Smelt Biological Opinion Action 4. The augmentation of flows through the Yolo Bypass/North Delta is also included as one of several Delta Smelt Resiliency Strategies by Natural Resources Agency. Objectives • Determine if managed flow actions through the Yolo Bypass stimulate increased primary productivity locally and downstream, and if it is repeatable. • Characterize how nutrients, chlorophyll and plankton (composition and density) in the Toe Drain, Cache Slough Complex, and lower Sacramento River change in response to flow pulses. • Determine if nutrient subsidies of the source water and downstream are limited by abiotic and biotic factors. • Characterize spatial differences and transport of pesticide contaminants in the Yolo Bypass in response to the flow actions. • Determine survival, growth and behavior of caged hatchery Delta Smelt before and after the flow action in the Yolo Bypass.
    Science topics Flows, Water management
    Updated April 29, 2022
  • Title

    Estimating Abundance of Juvenile Winter-run Chinook Salmon Entering and Exiting the Delta [SAIL]

    Lead U.S. Fish and Wildlife Service [USFWS]
    Description Description This is a continuation of a five year project funded by CDWR and CDFW and the Central Valley Project Improvement Act in 2017. The objective of the project is to improve estimates of population abundances for fall, winter and spring run juvenile Chinook Salmon at Sacramento and Chipps Island by improving efficiency estimates using data from releases of coded wire tags (CWT), acoustic tags (AT), and by genetically sampling the trawl catch in 2018. The project will (1) develop statistical models for estimating trawl efficiencies using 2016-2018 data for paired AT-CWT releases of winter run and fall-run Chinook Salmon;(2) use 2018 genetic sampling of trawl catch in combination with efficiency estimates to estimate population abundances of fall, spring and winter run at Sacramento and Chipps Island in 2018;(3) implement trawl efficiency studies for multiple salmon runs in 2018 informed by the 2016 and 2017 results and in coordination with hatcheries for inclusion of AT fish with existing CWT releases;and (4) combine trawl efficiencies with genetic samples of trawl catch to provide estimates of fall, spring and winter-run salmon abundance (with estimated precision) entering and exiting the Delta in 2018. Need There is growing appreciation that a salmon monitoring network that could quantitative estimates of abundance is desirable to improve our knowledge and resolution of life stage success and movement across the landscape (Salmon SAIL conceptual models 2016). Objectives (1) Estimate the population-level status and trends for winter run;and status of spring and fall run;(2) evaluate production estimates for juvenile winter-run Chinook Salmon entering the Delta used in water project take development;(3) provide estimates of winter and fall run-specific freshwater cohort strength to support ocean harvest management decisions;(4) establish a time series of winter, spring and fall run-specific production estimates at key locations for incorporation into life cycle models.
    Science topics Chinook Salmon
    Updated April 29, 2022
  • Title

    Reconstructing Juvenile Salmon Growth, Condition, and Delta Habitat Use in 2014-15 Drought and Beyond [SAIL]

    Lead University of California - Davis [UC Davis]
    Description Description Life history diversity buffers salmon populations over space (e.g. the use of natal and non-natal rearing habitats and time (e.g. variable migration timing resulting in greater probability of meeting optimal ocean conditions). Historically the Sacramento-San Joaquin Delta provided critical salmon rearing habitat, but urban expansion, water diversions and species introductions have resulted in inhospitable conditions unlikely to meet rearing needs. This study fills critical data gaps regarding Delta rearing by juvenile Chinook salmon – primarily to determine the annual migrant portfolio (proportion of different populations and life stages) and the relative success of Delta vs. natal rearing (inferred by rearing duration, growth rate, diet and condition). We quantify the extent to which Delta rearing contributes to salmon population resiliency under different environmental conditions, including drought (2014-15) and flood conditions (2017, 2019), and provide baseline data to provide insights into population-level responses to future habitat restoration and climate change. The study uses annual collections of fall & late fall run salmon samples from sites upstream (Mossdale/Sherwood Harbor), within, and downstream (Chipps Island) of the Delta sampled by the IEP Delta Juvenile Fish Monitoring Program (DJFMP). Need Annual monitoring surveys routinely sample salmon entering and leaving the Delta, but the extent to which these juveniles rear there is virtually unknown, and has been highlighted as a critical data gap for parameterizing the NMFS Chinook salmon life cycle model (S. Lindley NOAA pers. comm.). There are limited tools available to monitor habitat use by native fishes, with most efforts providing a snapshot of fish presence/absence or abundance. Tagging studies provide key information about migratory pathways and survival through stretches of the Delta, but are typically limited to larger individuals and often use hatchery smolts with different rearing needs and seareadiness to the smaller individuals most likely to use Delta habitats. Otoliths represent a unique tool to reconstruct fish age, natal origin, growth history, movement patterns, and habitat use, even in fry <40mm fork length. Objectives We will use juvenile salmon collected by the IEP Delta Juvenile Fish Monitoring Program to assess: 1. Contributions of different rivers & hatcheries to sites upstream, within & downstream of the Delta. 2. Delta habitat use (frequency, duration) and success (growth rates, condition and diet). 3. Mechanisms governing juvenile salmon outmigration timing from the natal tributary.
    Science topics None specified
    Updated April 29, 2022
  • Title

    Enhanced Delta Smelt Monitoring [EDSM]

    Lead U.S. Fish and Wildlife Service [USFWS]
    Description Description The Enhanced Delta Smelt Monitoring (EDSM) program is a year-round monitoring program comprised of multiple crews trawling concurrently at multiple sites in predefined strata within the San Francisco Estuary. Post-larval Delta Smelt are targeted approximately April through June using 20mm trawling gear, and Kodiak trawling gear is employed the remainder of the year. Gear efficiency experiments and shallow water sampling elements are incorporated when possible. Need The declining Delta Smelt population has highlighted the need to keep improving the array of information that supports our understanding of the factors affecting Delta Smelt population dynamics and management decisions to minimize adverse effects of water operations on the population. EDSM has biological significance and potential conservation benefit by providing data to resource managers on nearly all life stages of endangered Delta Smelt and near-real-time data on the juvenile and adult life stages. EDSM data is provided to the Smelt Working Group and other managers in near realtime to help inform management decisions during the entrainment season. Objectives • To estimate the total abundance of Delta Smelt, along with standard errors or confidence intervals, on a weekly to bi-weekly basis for various life stages (postlarvae, juveniles, sub-adults, adults) throughout the year; • To estimate the spatial distribution of Delta Smelt at a management relevant temporal and spatial resolution;and • To provide data that support management decisions and address scientific questions to further understanding of sampling efficiency, drivers of Delta Smelt population patterns, and other conservation and management-relevant topics.
    Science topics Delta Smelt
    Updated April 29, 2022
  • Title

    Effect of Outflow Alteration upon Delta Smelt Habitat, Condition and Survival

    Lead U.S. Bureau of Reclamation [USBR]
    Description Description The Directed Outflow Project (DOP) is a continuing collaborative effort among a dozen state, federal and non-governmental groups. The DOP will employ a focused spatial and temporal approach to evaluate mechanistic hypotheses directly related to the rationales provided for the summer Delta outflow action and Yolo Bypass Toe Drain action to benefit Delta Smelt, with direct relevance to the fall outflow action. Paired data collections (same location and time) of abiotic and biotic habitat constituents to test specific hypotheses will assist in avoiding prior shortcomings of using data collected for different studies/hypotheses and/or across variable spatial/temporal scales (as discussed in MAST [2015] and elsewhere). Sampling will occur during the Delta Smelt juvenile rearing-stage, a period known to be associated with the location of the low salinity zone (LSZ). Results should strengthen our understanding of the mechanisms and drivers impacting Delta Smelt vital rates and associated habitat features with a focus on outflow conditions. Results should assist in evaluating the benefit and feasibility of future flow augmentation actions for managers and decision makers. Results from this and other related studies will inform evaluations on which particular outflow-related action or group of actions provides the most benefit for Delta Smelt. Need Requests and plans for water management actions related to augmentation of Delta outflow have proceeded and are expected to proceed in the future. However, there is uncertainty and disagreement regarding the mechanistic relationship of Delta outflow during the rearing period to Delta Smelt vital rates and habitat, and the hypothesized benefit of outflow alteration for Delta Smelt. Delta outflow has experienced reductions in recent years, coinciding with the collapse of the Delta Smelt. Reduced outflow has been linked to reductions in habitat suitability in Suisun Bay and Marsh and movement of the LSZ to the Confluence of the Sacramento-San Joaquin River where little connection to shallow open water habitats exists. Objectives The DOP’s main objective will be to evaluate the hypothesized benefit of outflow alteration for Delta Smelt and its habitat in coordination with all stakeholder groups. The following process and product related sub-objectives will facilitate progression toward this evaluation objective. • Test mechanistic hypotheses addressing the rationale behind outflow-based actions to benefit Delta Smelt. • Concurrently sample fish and measure abiotic/biotic habitat conditions at each randomly selected location along the salinity and habitat gradient of the north to western Delta along the Sacramento River during the summer and fall.
    Science topics Delta Smelt
    Updated April 29, 2022
  • Title

    Integrating Measurement of Fish Body Condition within the Delta Juvenile Fish Monitoring Program [DJFMP]

    Lead U.S. Fish and Wildlife Service [USFWS]
    Description Description The aim of this pilot effort is to begin assessing methods and developing protocols for incorporating measurement of fish body condition (Fulton’s Condition Index, K) into standard Delta Juvenile Fish Monitoring Program (DJFMP) sampling. Need The goal of this study is to examine the utility of fish body condition as a measure for DJFMP to evaluate underlying factors driving fish health and survival in the Sacramento and San Joaquin River-Delta system. This will provide a more complete assessment of how condition metrics vary for common fish species that are sensitive to differences in environmental conditions, filling a fundamental data gap in our existing monitoring program. Objectives • Establish a pilot sampling design and methods for collection of data from fish sampled through DJFMP. • Assess the utility and expand the use of body condition to include up to 7 species of commonly sampled fishes. • Develop protocols for incorporating new methods into DJFMP sampling.
    Science topics Fish
    Updated April 29, 2022
  • Title

    Extracting Better Information from Long-Term Monitoring Data: Estimating Occupancy and Abundance of Near-Shore Fishes in the Sacramento-San Joaquin River Delta

    Lead U.S. Fish and Wildlife Service [USFWS]
    Description Description The purpose of this study is to expand IEP monitoring and inference to other dominant near-shore, littoral habitats not sampled by beach seines through the use of boat electrofishing. To accomplish this we will sample key littoral fish species across various near-shore habitats in order to determine how best to estimate abundance, occupancy, capture probabilities, and related environmental drivers. Need Expanding DJFMP sampling to other habitats throughout the Delta will allow our program to detect and monitor fishes and ecological trends through time, alleviating a recognized data gap. Current sampling relies on data collected through non-random fixed point sampling of unobstructed habitats, which limits the utility of our data to inform management decision. Objectives • Design boat electrofishing survey methods to expand DJFMP’s monitoring into habitats and locations not sampled by beach seining. • Design and develop field and data analysis methods for estimating capture probability and abundance using boat electrofishing techniques. • Predict spatio-temporal distribution of habitats occupied by key littoral species.
    Science topics Habitat
    Updated April 29, 2022
  • Title

    Continuous Water Quality Monitoring Stations

    Lead California Department of Water Resource [DWR]
    Description DWR has conducted water quality monitoring for the California State Water Project since 1968. This program is currently managed by the Division of Operations and Maintenance, Environmental Assessment Branch. Initially, this program sought to monitor eutrophication (an increase in chemical nutrients) and salinity in the SWP. Over time, the water quality program expanded to include parameters of concern for drinking water, recreation, and wildlife. DWR's Division of Operations and Maintenance (O&M) currently maintains 16 continuous water quality monitoring stations located throughout the State Water Project. Data from these automated stations are uploaded to the California Data Exchange Center (CDEC) website. Hourly to daily conductivity, temperature, turbidity, pH, fluorometry, UVA-254 absorption
    Science topics Water temperature, pH, Turbidity, Hydrocarbons / polycyclic aromatic hydrocarbons PAH, Rodenticides, Other discharge contaminants, Intertidal / transition zones, Main channels, Riparian wildlife
    Updated April 29, 2022
  • Title

    San Francisco Bay Joint Venture

    Lead U.S. Fish and Wildlife Service [USFWS]
    Description The San Francisco Bay Joint Venture (SFBJV) brings together over one hundred environmental organizations, governmental agencies, landowners, and the business community to achieve a common goal and vision: protect, restore and enhance wetlands throughout the nine Bay Area counties, for the benefit of wildlife and people. The San Francisco Bay Joint Venture (SFBJV) is one of twenty-two habitat-based Migratory Bird Joint Ventures (JV) that cover nearly all of the U.S. and Canada and much of Mexico. The SFBJV coordinates strategic habitat conservation throughout the nine San Francisco (SF) Bay Area counties in accordance with the SFBJV Implementation Plan. SFBJV partners work to protect, restore and enhance habitats through project implementation and by advancing related science, policy and communication priorities. The Joint Venture program provides opportunities to develop and deliver creative solutions to our current conservation challenges through the power of collaboration and partnership. The SFBJV is funded by the U.S. Fish and Wildlife Service (USFWS) and grants from other partners and programs.
    Science topics Hunting, Agriculture, Urban development, Recreation & tourism, Surface water / flow, Flood, Mudflats, Intertidal / transition zones, Above-highwater refugia, Main channels, Sloughs, Backwater, Submerged aquatic vegetation, Floating aquatic vegetation, Seasonally flooded, Open water, Managed ponds, Riparian wildlife, Delta islands, Pacific flyway, Waterfowl, Shorebirds, Gulls, Saltwater / freshwater marshes, Habitat, Non-resident / overwintering birds
    Updated April 29, 2022
  • Title

    Delta Regional Monitoring Program

    Lead San Francisco Estuary Institute [SFEI]
    Description The Delta Regional Monitoring Program (RMP) is a stakeholder-directed project formed to develop water quality data necessary for improving our understanding of Delta water quality issues.
    Science topics Hg and methyl mercury, Insecticides, Rodenticides, Herbicides, Fungicides, Main channels, Sloughs, Chinook Salmon, Steelhead Trout, Green sturgeon, White Sturgeon, Striped bass, Fish
    Updated April 29, 2022
  • Title

    Pacific Flyway Shorebird Survey

    Lead Point Blue Conservation Science
    Description PFSS is a coordinated multi-partner monitoring program led by Point Blue Conservation Science designed to guide the management and conservation of wintering shorebirds in the Pacific Flyway. The PFSS contributes data to the Migratory Shorebird Project, the largest coordinated survey of wintering shorebirds on the Pacific Coast of the Americas spanning 10 countries from Canada to Peru.
    Science topics Hunting, Flood, Mudflats, Intertidal / transition zones, Above-highwater refugia, Sloughs, Submerged aquatic vegetation, Floating aquatic vegetation, Seasonally flooded, Open water, Managed ponds, Riparian wildlife, Forests, Non-forested vegetation, Delta islands, Pacific flyway, Shorebirds, Saltwater / freshwater marshes, Habitat, Non-resident / overwintering birds
    Updated April 29, 2022
  • Title

    The Heron and Egret Project

    Lead Audubon Canyon Ranch
    Description Our current work focuses on the effects of climate change and human disturbance to heronries.
    Science topics Intertidal / transition zones, Seasonally flooded, Open water, Managed ponds, Riparian wildlife, Forests, Waterfowl, Shorebirds, Saltwater / freshwater marshes
    Updated April 29, 2022
  • Title

    Audubon Christmas Bird Count [CBC]

    Lead National Audubon Society
    Description Each November, birders interesting in participating in the CBC can sign up and join in through the Audubon website. From December 14 through January 5 each year tens of thousands of volunteers throughout the Americas brave snow, wind, or rain, and take part in the effort.
    Science topics Mudflats, Intertidal / transition zones, Above-highwater refugia, Seasonally flooded, Open water, Managed ponds, Riparian wildlife, Forests, Non-forested vegetation, Delta islands, Pacific flyway, Waterfowl, Shorebirds, Gulls, Saltwater / freshwater marshes, Habitat, Non-resident / overwintering birds
    Updated April 29, 2022
  • Title

    California Partners In Flight [CalPIF]

    Lead Point Blue Conservation Science
    Description The CalPIF mission is to promote the conservation of resident and migratory landbirds and their habitats in California through research, monitoring, education, and collaboration among public and private landowners and managers, government agencies, non-government organizations, and individuals and other bird conservation efforts. The California chapter of Partners in Flight (CalPIF) was established in 1992. The California Partners in Flight program has completed eight habitat and bioregion based Bird Conservation Plans (BCP's) for Riparian, Oak Woodlands, Coastal Scrub and Chaparral, Grasslands, Coniferous Forests, Sagebrush, Desert, and the Sierra Nevada Bioregion. These BCPs are for every land manager and researcher interested in improving habitat for landbirds. These plans are dynamic documents that will follow a continous process of developing and updating conservation recommendations for California's habitats based on the latest scientific monitoring and research data.
    Science topics Mudflats, Intertidal / transition zones, Above-highwater refugia, Seasonally flooded, Open water, Managed ponds, Riparian wildlife, Forests, Non-forested vegetation, Delta islands, Pacific flyway, Waterfowl, Shorebirds, Gulls, Non-resident / overwintering birds
    Updated April 29, 2022
  • Title

    Central Valley Enhanced Acoustic Tagging Project

    Lead National Oceanic and Atmospheric Administration [NOAA]
    Description There is a well documented need for improved detection and associated modeling of salmon migration and survival in the Central Valley. We propose to address this need through an expanded acoustic receiver network and associated real-time and retrospective modeling of the data. The proposed work includes (1) the deployment of real-time receivers that will provide timely information on migrating salmon smolt location and timing, (2) expansion of the existing autonomous acoustic array to increase the coverage and detection efficiency;(3) development of new metrics for the real-time data for key management relevant questions such as entrainment estimates at critical junctions (Georgiana Slough and Delta Cross Channel);and (4) a retrospective analyses directly geared toward improving the quality and robustness of an existing forecasting model - the NMFS enhanced particle tracking model.
    Science topics Chinook Salmon, Steelhead Trout, Green sturgeon
    Updated April 29, 2022
  • Title

    North American Breeding Bird Survey [BBS]

    Lead U.S. Geological Survey [USGS]
    Description The North American Breeding Bird Survey (BBS) is the primary source for critical quantitative data to evaluate the status of continental bird species, keeping common birds common and helping fuel a $75 billion wildlife watching industry.
    Science topics Mudflats, Intertidal / transition zones, Above-highwater refugia, Main channels, Sloughs, Backwater, Seasonally flooded, Open water, Managed ponds, Riparian wildlife, Forests, Non-forested vegetation, Delta islands, Pacific flyway, Waterfowl, Shorebirds, Gulls, Saltwater / freshwater marshes, Habitat, Birds, Non-resident / overwintering birds
    Updated April 29, 2022
  • Title

    Marine Invasive Species Program [MISP]

    Lead California Department of Fish and Wildlife [CDFW]
    Description The Marine Invasive Species Program (MISP) is responsible for analysis of shipping vectors (pathways) responsible for the introduction of non-indigenous species (NIS) into California's coastal waters. MISP has partnered with the Smithsonian Environmental Research Center (SERC) and Moss Landing Marine Laboratories (MLML) to undertake an extensive program to analyze spatial and temporal patterns of NIS invasions in marine and estuarine waters of California. MISP collaborates with the California State Lands Commission (CSLC) to regulate and minimize the introduction of Nonindigenous Species (NIS) into California by ocean-going vessels. MISP is partners with the Smithsonian Environmental Research Center (SERC) to conduct biological surveys monitoring the coastal waters of California to determine the level of invasion by NIS;and San Jose State University's Moss Landing Marine Labs (MLML) to conduct genetic analysis of NIS. The California Ballast Water Management Act of 1999 initiated baseline surveys by the California Department of Fish and Wildlife (CDFW) to document the distribution of nonindigenous species in the state's coastal and estuarine waters.
    Science topics Striped bass, Corbicula/Potamocorbula, Water hyacinth, Brazilian waterweed, Spongeplant, Giant reed, Yellow star thistle, Invasive / non native species
    Updated April 29, 2022
  • Title

    Monitoring Avian Productivity and Survivorship

    Lead The Institute for Bird Populations
    Description The MAPS Program is a continent-wide collaborative effort among public agencies, non-governmental groups, and individuals to assist the conservation of birds and their habitats through demographic monitoring. Since 1989, more than 1,200 MAPS stations spread across nearly every state and Canadian province have collected more than 2 million bird capture records.
    Science topics Mudflats, Intertidal / transition zones, Above-highwater refugia, Main channels, Sloughs, Backwater, Seasonally flooded, Open water, Managed ponds, Riparian wildlife, Forests, Non-forested vegetation, Delta islands, Pacific flyway, Waterfowl, Shorebirds, Gulls, Saltwater / freshwater marshes, Habitat, Birds, Non-resident / overwintering birds
    Updated April 29, 2022
  • Title

    Central Valley Project - Reservoir Monitoring

    Lead U.S. Bureau of Reclamation [USBR]
    Description The Central Valley Project (USBR) is responsible for maintaining and monitoring water levels in several key reservoirs in California. The reservoirs of focus (largest capacity) within the CVP are Folsom, Whiskeytown, Shasta, Trinity, San Luis, and Millerton. San Luis is jointly monitored by USBR and DWR. Reservoir storage, elevation, inflow, and outflow are monitored daily, with some parameters at certain reservoirs being monitored hourly or monthly, and reported to the California Data Exchange Center (CDEC) for public access.
    Science topics Water storage, Water conveyance / infrastructure, Surface water / flow, Stage, Flood, Precipitation, Main channels, Water use / demand, Evaporation / evapotranspiration
    Updated April 29, 2022
  • Title

    State Water Project - Reservoir Monitoring

    Lead California Department of Water Resource [DWR]
    Description The State Water Project (DWR) is responsible for maintaining and monitoring water levels in several key reservoirs in California. The reservoirs of focus (largest capacity) within the CVP are Oroville, San Luis, Pyramid, Perris, and Castaic. San Luis is jointly monitored by USBR and DWR. Reservoir storage, elevation, inflow, and outflow are monitored daily, with some parameters at certain reservoirs being monitored hourly or monthly, and reported to the California Data Exchange Center (CDEC) for public access.
    Science topics Water storage, Surface water / flow, Stage, Flood, Main channels
    Updated April 29, 2022
  • Title

    Water Quality Data for California

    Lead U.S. Geological Survey [USGS]
    Description The USGS collects and analyzes chemical, physical, and biological properties of water, sediment and tissue samples from across the Nation. The Water Data for the Nation discrete sample data base is a compilation of over 4.4 million historical water quality analyses in the USGS district data bases through September 2005. The discrete sample data is a large and complex set of data that has been collected by a variety of projects ranging from national programs to studies in small watersheds.
    Science topics Water temperature, Dissolved oxygen, pH, Conductivity
    Updated April 29, 2022
  • Title

    eBird

    Lead Cornell University - Lab of Ornithology
    Description eBird is the world's largest biodiversity-related citizen science project, with more than 100 million bird sightings contributed each year by eBirders around the world. A collaborative enterprise with hundreds of partner organizations, thousands of regional experts, and hundreds of thousands of users, eBird is managed by the Cornell Lab of Ornithology.
    Science topics Mudflats, Intertidal / transition zones, Above-highwater refugia, Main channels, Sloughs, Backwater, Seasonally flooded, Open water, Managed ponds, Riparian wildlife, Forests, Non-forested vegetation, Delta islands, Pacific flyway, Waterfowl, Shorebirds, Gulls, Saltwater / freshwater marshes, Habitat, Birds, Non-resident / overwintering birds
    Updated April 29, 2022
  • Title

    Discrete dissolved oxygen monitoring in the Stockton Deep Water Ship Channel

    Lead California Department of Water Resource [DWR]
    Description Dissolved oxygen levels in the Stockton Deep Water Ship Chanel (SDWSC) have been monitored since 1968 by the Interagency Ecological Program's (IEP) Environmental Monitoring Program (EMP). The SDWSC is located on the San Joaquin River near Stockton, California. Beginning in 1997, 14 stations were routinely monitored typically in summer and fall. Dissolved oxygen impairment can occur in the SDWSC;therefore, two water quality objectives were established.
    Science topics Chlorophyll A / B, Water temperature, Dissolved oxygen, pH, Turbidity, Main channels, Conductivity
    Updated April 29, 2022
  • Title

    Surface Water Quality Monitoring

    Lead California State Water Resources Control Board [SWRCB]
    Description Within the ILRP, growers can opt to acquire one of 2 types of permit coverage: Coalition coverage and Individual coverage. If the coalition option is chosen, a grower is allowed to share the cost of compliance, monitoring and reporting with other members of the coalition and reduces/eliminates grower interactions with the Central Valley Water Board (CVWB). The CVWB will then undertake the water quality monitoring. Ambient water and sediment quality monitoring for agricultural discharge will occur using three types of monitoring: Core Monitoring, Assessment Monitoring, and Management Plan Monitoring. Combined, these three levels of monitoring are designed to characterize the discharge from irrigated agriculture as a result of irrigation and storm water runoff.
    Science topics Agriculture, Surface water / flow, Nitrogen / ammonia, Phosphorous, Carbon, Chemistry, Toxicity, Water temperature, Dissolved oxygen, pH, Turbidity, Lead, Copper, Zinc, Arsenic, Selenium, Insecticides, Rodenticides, Herbicides, Fungicides, Other discharge contaminants, Conductivity, Fecal coliform / E. coli
    Updated April 29, 2022
  • Title

    20-mm Survey [Delta Smelt distribution monitoring]

    Lead California Department of Fish and Wildlife [CDFW]
    Description California Department of Fish and Wildlife (CDFW) conducts the 20-mm Survey annually to monitor the distribution and relative abundance of larval and juvenile Delta Smelt (Hypomesus transpacificus) in the upper San Francisco Bay Estuary. The survey began in 1995 and supplies near real-time catch data to water and fisheries managers as part of an adaptive management strategy to limit the risk of Delta Smelt entrainment during water exports Data collected: temperature, electro-conductivity, water transparency, turbidity, water volume, tidal stage, fish, and zooplankton.
    Science topics Stage, Tides, Other zooplankton, Water temperature, Turbidity, Chinook Salmon, Steelhead Trout, Green sturgeon, White Sturgeon, Delta Smelt, Longfin Smelt, Sacramento Splittail, Benthos
    Updated April 29, 2022
  • Title

    Drinking Water Well Monitoring

    Lead California State Water Resources Control Board [SWRCB]
    Description On 7 February 2018 the State Water Board revised the Waste Discharge Requirements (Order) for the Eastern San Joaquin River Watershed. The revised Order includes a new drinking water well monitoring requirement. Beginning 1 January 2019, East San Joaquin Water Quality Coalition (ESJWQC) members must monitor drinking water wells on enrolled parcels for nitrates. High levels of nitrates found in drinking water wells impact public health. Excess nitrates (NO3) in soil are often found in rural and agricultural areas. The most common sources of nitrate are fertilizer, livestock waste, and septic systems. Nitrates in soil are highly mobile and can be easily transported to groundwater. The purpose of Drinking Water Well Monitoring is to identify drinking water wells that have nitrate concentrations exceeding the drinking water standard and notify any well users of the potential health risks.
    Science topics Agriculture, Groundwater, Nitrogen / ammonia, Other discharge contaminants
    Updated April 29, 2022
  • Title

    Surface Water Monitoring

    Lead California Department of Water Resource [DWR]
    Description DWR continuously monitors surface water quality and hydrology at 49 sites within the Delta. The extensive DWR Central District Surface Water Monitoring network provides continuous data of flow magnitude and direction and general chemical water quality characteristics. Electrical conductivity (EC) is measured continuously at 24 of these stations. Measurements are recorded at 15-minute intervals and then reduced to a report format. At each EC site, equations are available to convert EC to chlorides and total dissolved solids. Several of the EC stations in the Delta also continuously monitor temperature and provide 15-minute temperature data.
    Science topics Surface water / flow, Stage, Precipitation, Water temperature, Turbidity, Conductivity
    Updated April 29, 2022
  • Title

    Phytoplankton and Chlorophyll-a Monitoring

    Lead California Department of Water Resource [DWR]
    Description The California DWR Phytoplankton and Chlorophyll-a monitoring measures the composition (what kinds?), abundance (how many?), diversity (how many kinds?), and distribution (where are they?) of phytoplankton. It also measures phytoplankton biomass as chlorophyll-a;both types of monitoring are performed as part of the IEP’s Environmental Monitoring Program (EMP).
    Science topics Chlorophyll A / B, Phytoplankton, Water temperature, Dissolved oxygen, pH, Main channels, Conductivity
    Updated April 29, 2022
  • Title

    Delta-Mendota Canal Water Quality Monitoring

    Lead U.S. Bureau of Reclamation [USBR]
    Description Reclamation proposes to execute contracts with local water districts to convey non-project water in the Delta-Mendota Canal (DMC) subject to water quality monitoring, groundwater monitoring and reporting requirements outlined in this document
    Science topics Surface water / flow, Nitrogen / ammonia, Salinity, Turbidity, Hg and methyl mercury, Lead, Copper, Zinc, Arsenic, Selenium, Other discharge contaminants, Conductivity
    Updated April 29, 2022
  • Title

    Aquatic Invasive Species Programs

    Lead California Department of Parks and Recreation [PARKS]
    Description The Aquatic Weed Control Program includes both floating and submersed aquatic vegetation. DBW uses an Integrated Pest Management strategy with the following components: - Public information and education - Prevention - Pre-established action levels for chemical, biological and physical control - Environmental monitoring Since submersed and floating aquatic vegetation are well established in the Sacramento- San Joaquin Delta, eradication may not be feasible, while controlling invasive growth is likely to lessen negative economic and biological impacts.
    Science topics Salinity, Water temperature, Dissolved oxygen, pH, Turbidity, Main channels, Sloughs, Backwater, Floating aquatic vegetation, Water hyacinth, Brazilian waterweed, Spongeplant, Conductivity, Saltwater / freshwater marshes, Other species
    Updated April 29, 2022
  • Title

    National Pollution Discharge Elimination System [NPDES] Self-Monitoring Program

    Lead U.S. Environmental Protection Agency [USEPA]
    Description The NPDES permit program, created in 1972 by the Clean Water Act (CWA), helps address water pollution by regulating point sources that discharge pollutants to waters of the United States. The permit provides two levels of control: technology-based limits and water quality-based limits (if technology-based limits are not sufficient to provide protection of the water body). NPDES requires self-monitoring for its permitting programs: stormwater, industrial, vessel, and municipal discharges.
    Science topics Wastewater discharge, Nitrogen / ammonia, Salinity, Water temperature, Dissolved oxygen, pH, Turbidity, Hg and methyl mercury, Lead, Copper, Zinc, Conductivity, Stormwater runoff / drainage, Fecal coliform / E. coli
    Updated April 29, 2022
  • Title

    Contra Costa Water District Source Water Monitoring

    Lead Contra Costa Water District [CCWD]
    Description CCWD source water monitoring provides information on Delta water prior to intake and treatment for water supply. Conduct monitoring at several water supply sites located near the intakes of (or inside) the California and North Bay aqueducts and Contra Costa Canal. Water supply programs monitor general water quality and a wide range of constituents of concern relevant to drinking water, including nutrients, OC, bromide, pathogens, and pesticides.
    Science topics Nitrogen / ammonia, Harmful algal blooms HAB, Salinity, pH, Turbidity, Lead, Copper, Other discharge contaminants, Conductivity, Fecal coliform / E. coli
    Updated April 29, 2022
  • Title

    Grasslands Bypass Project Monitoring

    Lead U.S. Bureau of Reclamation [USBR]
    Description The Grassland Bypass Project has been under waste discharge requirements (WDRs) since 1998. Historically, subsurface agricultural drainage water (tile drainage) and surface runoff (irrigation tail water) from the Grassland Watershed was discharged to the San Joaquin River through Salt Slough and/or Mud Slough (north). These two sloughs are tributary to the San Joaquin River and serve as the primary drainage outlets for the Grassland Watershed. With the start of the Grassland Bypass Project in 1996, all tile drainage from a 97,000 acre area known as the Grassland Drainage Area is consolidated and conveyed through San Luis Drain to Mud Slough, eliminating discharges of drainage water from the Grassland Drainage Area into Salt Slough and wetlands. Reducing selenium in wetland channels is the primary goal of the Project, as elevated concentrations of selenium have been documented to be hazardous to wildlife. The Project prevents discharge of subsurface agricultural drainage water into wildlife refuges and wetlands in central California . The drainage water is conveyed instead through a segment of the San Luis Drain to Mud Slough, a tributary of the San Joaquin River. The Project improves water quality in the wildlife refuges and wetlands, sustains the productivity of 97,000 acres of farmland, and fosters cooperation between area farmers and regulatory agencies in drainage management reduction of selenium and salt loading. The Project is operated by the Bureau of Reclamation and the San Luis & Delta-Mendota Water Authority (Authority).
    Science topics Agriculture, Surface water / flow, Water temperature, pH, Selenium, Conductivity
    Updated April 29, 2022
  • Title

    Central Valley Project

    Lead U.S. Bureau of Reclamation [USBR]
    Description The CVP is one of the largest water storage and transport systems in the world, comprised of 20 reservoirs and more than 500 miles of canals. This project provides water used to irrigate more than 3 million acres of agricultural land and has a total reservoir storage of 11,363,000 acre-feet.
    Science topics Water operations / exports, Water storage, Water conveyance / infrastructure, Surface water / flow, Stage, Flood
    Updated April 29, 2022
  • Title

    Benthic Organism Study

    Lead U.S. Bureau of Reclamation [USBR]
    Description This program operates under the Interagency Ecological Program's (IEP) Environmental Monitoring Program (EMP). "The Benthic Organism monitoring effort was started in 1975 and currently monitors 10 sites across the estuary's salinity gradient, from Suisun Bay upstream to Clifton Court Forebay and Stockton, on a monthly basis. Benthic invertebrates are collected with a PONAR grab, preserved, identified, and enumerated. In addition to mandated monthly monitoring of benthic invertebrates, we also conducted special studies of benthic invertebrates using spatial intensive sampling schemes. These special studies complement the long-running mandated monitoring and provide a more comprehensive picture of the benthic community of the Upper San Francisco Estuary." Changes in benthic fauna presence, abundance and distribution associates physical factors are measured in the estuary to evaluate the impacts of water project operations. 426 species in 10 phyla have been collected to date. Data is also used to detect introduced species. Sediment composition data also collected to document general trends at sites where benthic organisms are collected. https://emp.baydeltalive.com/projects/12727/page
    Science topics Suspended sediment, Bedload, Deposition, Erosion, Insects, Mollusks, Crustaceans
    Updated April 29, 2022
  • Title

    State Water Project

    Lead California Department of Water Resource [DWR]
    Description The California State Water Project (SWP) is a water storage and delivery system of reservoirs, aqueducts, power plants and pumping plants extending more than 700 miles - two-thirds the length of California. Planned, constructed, and operated by the Department of Water Resources, the SWP is the nation's largest state-built, multi-purpose, user-financed water project. It supplies water to more than 27 million people in northern California, the Bay Area, the San Joaquin Valley, the Central Coast and southern California. SWP water also irrigates about 750,000 acres of farmland, mainly in the San Joaquin Valley.
    Science topics Water operations / exports, Water storage, Water conveyance / infrastructure, Surface water / flow, Stage, Main channels, Habitat
    Updated April 29, 2022
  • Title

    Endangered Species Project

    Lead California Department of Pesticide Regulation [DPR]
    Description In California, DPR has been studying endangered species protection issues with federal funding since 1988. DPR activities include mapping sites occupied by federally listed species, evaluating pesticide exposure risks to inhabited sites, classifying risk and developing protection strategies to minimize risk as needed. There are currently 359 federally listed species in California including federally protected endangered and threatened species, proposed endangered, proposed threatened and Category 1 candidate species (that await only administrative processes to become protected species). Collectively, the federally listed species may occupy about 16 million acres, or about 16 percent of the land area of the state, albeit at very low densities. Of all federally listed species in California, the San Joaquin kit fox has by far the greatest overlap with agricultural areas, accounting for about 10 million acres in 14 counties, mostly in the agriculturally rich southern San Joaquin Valley. Other species that are interspersed with agricultural areas include birds, mammals, reptiles, amphibians, crustaceans and many plants.
    Science topics Agriculture, Urban development, Insecticides, Rodenticides, Herbicides, Fungicides, Chinook Salmon, Delta Smelt, Benthos, Shorebirds, Giant garter snake, California tiger salamander, Insects, Other species, Fish, Mammals, Birds, Amphibians and reptiles
    Updated April 29, 2022
Showing results 1 to 100 of 237