Science activities

Reset filters

40 records


















Records

Currently, sorted by last updated
  • Title

    Monitoring and Assessment of Suisun Marsh Salinity Control Gates Action

    Lead California Department of Water Resource [DWR]
    Description The Suisun Marsh Salinity Control Gates (SMSCGs) have the potential to provide an increase in low-salinity-zone habitat for endangered Delta Smelt. Operation of the SMSCGs in summer and fall to improve Delta Smelt habitat are called for in the Biological Opinion and Incidental Take permit for the Central Valley Project and State Water Project. To support the adaptive management of the action, DWR is planning to monitor the change in water quality, phytoplankton, zooplankton, fishes, and clams resulting from the action.
    Science topics Delta Smelt, Phytoplankton, Salinity
    Updated November 17, 2022
  • Title

    Suisun Marsh Salinity Control Gates Action Pilot Study

    Lead California Department of Water Resource [DWR]
    Description In summer 2018 we used a unique water control structure in the San Francisco Estuary to direct a managed flow pulse into Suisun Marsh. Field monitoring showed that turbidity and chlorophyll were at higher levels in Suisun Marsh, representing better habitat conditions, than the upstream Sacramento River region throughout the study period. Fish monitoring data suggested that small numbers of Delta Smelt colonized Suisun Marsh from the Sacramento River during the 2018 Flow Action.
    Science topics Delta Smelt, Phytoplankton, Salinity
    Updated September 28, 2023
  • Title

    Delta Regional Monitoring Program Mercury Monitoring

    Lead Delta Regional Monitoring Program [RMP]
    Description Monitoring of sport fish and water was conducted by the Delta Regional Monitoring Program (Delta RMP) from August 2016 to April 2017 to begin to address the highest priority information needs related to implementation of the Sacramento–San Joaquin Delta Estuary Total Maximum Daily Load (TMDL) for Methylmercury (Wood et al. 2010). Two species of sport fish, largemouth bass (Micropterus salmoides) and spotted bass (Micropterus punctulatus), were collected at six sampling locations in August and September 2016. The length-adjusted (350 mm) mean methylmercury (measured as total mercury, which is a routinely used proxy for methylmercury in predator fish) concentration in bass ranged from 0.15 mg/kg or parts per million (ppm) wet weight at Little Potato Slough to 0.61 ppm at the Sacramento River at Freeport. Water samples were collected on four occasions from August 2016 through April 2017. Concentrations of methylmercury in unfiltered water ranged from 0.021 to 0.22 ng/L or parts per trillion. Concentrations of total mercury in unfiltered water ranged from 0.91 to 13 ng/L. Over 99% of the lab results for this project met the requirements of the Delta RMP Quality Assurance Program Plan, and all data were reportable. This data report presents the methods and results for the first year of monitoring. Historic data from the same or nearby monitoring stations from 1998 to 2011 are also presented to provide context. Monitoring results for both sport fish and water were generally comparable to historic observations. For the next several years, annual monitoring of sport fish will be conducted to firmly establish baseline concentrations and interannual variation in support of monitoring of long-term trends as an essential performance measure for the TMDL. Monitoring of water will solidify the linkage analysis (the quantitative relationship between methylmercury in water and methylmercury in sport fish) in the TMDL. Water monitoring will also provide data that will be useful in verifying patterns and trends predicted by numerical models of mercury transport and cycling being developed for the Delta and Yolo Bypass by the California Department of Water Resources (DWR).
    Science topics Biosentinels, Fish, Methylmercury, Restoration, Water
    Updated November 17, 2022
  • Title

    Operation Baseline Project 2B: Phytoplankton, CSU Maritime Academy

    Lead California State University Maritime Academy
    Description Planned upgrades to the Sacramento Regional wastewater treatment plant (Regional San) between 2019 and 2021 will reduce total nitrogen inputs by >60% and shift the dominant form of nitrogen entering the Delta from ammonium (NH4) to nitrate (NO3). These changes will affect the Delta in ways unforeseeable with existing knowledge. The focus of this project is to quantify the links between wastewater nitrogen and phytoplankton standing stock, community composition and carbon and nitrogen production. Working in collaboration with the other two Operation Baseline projects, we will: 1. validate in situ monitoring approaches for phytoplankton standing stock and community composition (i.e. using size-fractionated chlorophyll-a and diagnostic phytopigments via HPLC) and 2. provide estimates of ambient and nitrogen-saturated phytoplankton NH4 and NO3 uptake rates as well as C uptake. Phytoplankton N and C uptake rates will be made along spatial gradients in nitrogen and water residence time (Task 1) and in three wetland habitats with varying influence from wastewater nitrogen (Task 3). Together with the other proposals, this project will provide much needed baseline characterization of nutrient processes in the Delta prior to Regional San upgrades.
    Science topics Algae, Floating aquatic vegetation, Food webs, Nitrogen / ammonia, Open water, Other discharge contaminants, Phytoplankton, Submerged aquatic vegetation, Wastewater discharge, Water operations / exports, Wetlands, Zooplankton
    Updated December 14, 2022
  • Title

    Operation Baseline Project 2C: Zooplankton, Romberg Tiburon Center, SFSU

    Lead San Francisco State University [SFSU]
    Description This project will examine responses of zooplankton (copepods) to variations in the foodweb attributable to nutrient sources. At each wetland site we will determine spatial abundance patterns and rates of reproduction, growth, and mortality. These will be integrated with information on phytoplankton and physical dynamics to determine how population dynamics responds to nutrient conditions. Stable isotopes will be used to assess nutrient source contributions to growth.
    Science topics Algae, Floating aquatic vegetation, Food webs, Nitrogen / ammonia, Open water, Other discharge contaminants, Phytoplankton, Submerged aquatic vegetation, Wastewater discharge, Water operations / exports, Wetlands, Zooplankton
    Updated December 14, 2022
  • Title

    Effect of temperature and salinity on physiological performance and growth of longfin smelt: Developing a captive culture for a threatened species in the Sacramento- San Joaquin Delta

    Lead University of California - Berkeley [UC Berkeley]
    Description This research project aimed to improve understanding of the physiological requirements for survival and reproduction across the entire life history of longfin smelt (from egg to larvae to juvenile to reproducing adult). The overall goals of this project were to assist in developing a captive longfin smelt culture and assess longfin smelt responses to multiple stressors across all life stages, which has been difficult because of extremely low (<10%) larval survival of these fish.
    Science topics Delta Smelt, Longfin Smelt, Salinity, Temperature
    Updated November 17, 2022
  • Title

    Do light, nutrient, and salinity interactions drive the “bad Suisun” phenomenon? A physiological assessment of biological hotspots in the San Francisco Bay-Delta

    Lead University of California - Santa Cruz [UCSC]
    Description This project assessed the physiological basis for reduced phytoplankton growth in Suisun Bay, prior to the major upgrade at the Sacramento Regional Wastewater Treatment Plant (SRWTP), which is responsible for 90% of the nitrogen released into the bay. The work involved analyzing almost three decades of historical eld data from the bay-delta and using it to build a model to evaluate environmental drivers of phytoplankton biomass. Discoveries from the eld data were then tested through laboratory culturing experiments. By illuminating the interacting e ects of bottom- up drivers (light, nutrients, salinity) on phytoplankton, this research helps provide a fundamental understanding of this complex ecosystem.
    Science topics Ammonia, Flushing rates, Light, Open water, Pelagic fish, Phytoplankton, Salinity, Wastewater discharge, Water temperature
    Updated November 17, 2022
  • Title

    Simulating methylmercury production and transport at the sediment-water interface to improve the water quality in the Delta

    Lead University of California - Merced [UC Merced]
    Description The aim of this project was to improve basic knowledge of mercury cycling and aid management of net methylmercury production in the delta by developing a kinetic-thermodynamic reaction model that describes and quantifies mercury cycling in delta sediments. The model was used to assess uncertainties and estimate methylation and demethylation rates — the processes by which methylmercury is produced and breaks down. In addition, the project examined coupling of mercury cycling with cycling of iron, sulfur, and manganese.
    Science topics Bioaccumulation, Chemistry, Hg and methyl mercury
    Updated November 17, 2022
  • Title

    Operation Baseline Project 1: Conceptual Framework

    Lead Delta Stewardship Council
    Description A multidisciplinary team will develop a thorough conceptual model that will describe current conditions and consider changes from the WWTP upgrade. The model will be used to identify the highest priority science questions and investigations to pursue before, during, and after the plant upgrade.
    Science topics Algae, Floating aquatic vegetation, Food webs, Nitrogen / ammonia, Open water, Other discharge contaminants, Phytoplankton, Submerged aquatic vegetation, Wastewater discharge, Water operations / exports, Wetlands, Zooplankton
    Updated December 14, 2022
  • Title

    Operation Baseline Project 2A1: USGS Pilot Studies

    Lead U.S. Geological Survey [USGS]
    Description Two pilot studies were funded to establish a baseline in open water and shallow wetland habitats prior to the WWTP upgrade. Study 1: Nutrient concentrations, transformation rates, and links to the foodweb. Study 2: Method to improve monitoring using fixed stations coupled with high-speed boat measurements
    Science topics Algae, Floating aquatic vegetation, Food webs, Nitrogen / ammonia, Open water, Other discharge contaminants, Phytoplankton, Submerged aquatic vegetation, Wastewater discharge, Water operations / exports, Wetlands, Zooplankton
    Updated December 14, 2022
  • Title

    Operation Baseline Project 2A2: USGS Pilot Studies - Isotopes

    Lead U.S. Geological Survey [USGS]
    Description Evaluate the usefulness of stable isotopes to trace nutrients form effluent water
    Science topics Algae, Floating aquatic vegetation, Food webs, Nitrogen / ammonia, Open water, Other discharge contaminants, Phytoplankton, Submerged aquatic vegetation, Wastewater discharge, Water operations / exports, Wetlands, Zooplankton
    Updated December 14, 2022
  • Title

    Impacts of climate change on pesticide bioavailability and sublethal effects on juvenile Chinook salmon in the Delta: Potential benefits of floodplain rearing

    Lead University of California - Riverside [UC Riverside]
    Description The Project will include field studies to estimate loadings and bioavailability of pesticides, concentrations of pesticide residues in salmonid prey, and the trophic basis of juvenile Chinook salmon growth (benthic vs. pelagic food web pathways) and how each of these differ between floodplain and river channel habitats in the Delta. Data from the field studies will inform development of laboratory studies that will assess the potential effects of exposure to environmentally-relevant pesticide types and concentrations in prey on swimming performance, olfaction and neuroendocrinology of juvenile Chinook salmon. Laboratory studies will also evaluate how water temperature (including increased water temperatures predicted with climate change) influences these sub-lethal effects of pesticides on juvenile salmon.
    Science topics None specified
    Updated November 29, 2022
  • Title

    Identifying the Causes of Feminization of Chinook Salmon in the Sacramento and San Joaquin River System

    Lead University of California - Berkeley [UC Berkeley]
    Description Purpose was to assess the potential importance of endocrine-disrupting chemical contaminants to salmon and other resident speices of waters that are discharged into the San Francisco-San Joaquin Delta.
    Science topics Chinook Salmon
    Updated April 29, 2022
  • Title

    Predicting the Effects of Invasive Hydrozoa [Jellyfish] on Pelagic Organisms Under Changing Salinity and Temperature Regimes

    Lead University of California - Davis [UC Davis]
    Description The purpose of this project seeks to investigate the potential effects of jellyfish, a devising invader of some ecosystems, on the SFE ecosystem, to determine the key factors allowing successful establishment and spread of these species, and to predict future effects and spread of the invasions.
    Science topics Water temperature, Salinity, Pelagic fish, Jellyfish
    Updated April 29, 2022
  • Title

    Climate change impacts to San Francisco Bay-Delta wetlands: Links to pelagic food webs and predictive responses based on landscape modeling

    Lead San Francisco State University [SFSU]
    Description The purpose of this project is to 1) evaluate the potential impacts of climate change on SF Bay-Delta tidal wetlands, 2) improve our understanding of the linkage between these wetlands and the pelagic food web, especially fish populations, and 3) use this information to make predictions about potential effects of climate change on Bay-Delta fish populations.
    Science topics Pelagic fish, Wetlands
    Updated April 29, 2022
  • Title

    Comparison of Nutrient Sources and Phytoplankton Growth and Species Composition in Two Rivers: Their Roles in Determining Productivity and Food Web Conditions in Suisun Bay and the Delta

    Lead San Francisco State University [SFSU]
    Description
    Science topics Phytoplankton, Pelagic fish, Nitrogen / ammonia
    Updated April 29, 2022
  • Title

    The Transport and Dispersion of Rafting Vegetation in the Sacramento-San Joaquin Delta

    Lead University of California - Berkeley [UC Berkeley]
    Description The research we are proposing here is focused on developing a thorough, mechanistic understanding of how rafting vegetation, such as hyacinths or egeria, is transported in the Sacramento-San Joaquin Delta. Our approach is to examine in detail the forces that act on rafts of vegetation, and the resulting raft accelerations, to establish a predictive model of raft pathlines. Our model development will be built around a series of field experiments that include measurements of raft movement using GPS-logging drifters integrated into rafts, tidal and wind-forcing using a boat mounted current profiler and an anemometer, and direct estimation of the water-induced shear stress using a point velocity meter incorporated into the actual rafts. These field observations will be used to critically evaluate a numerical model of both channel (tidal) flows and resulting raft movement. Our initial development will include a highly-resolved channel flow model, which will explicitly capture more lateral variability, including low velocity side “pockets”, than is typically resolved with Delta scale hydrodynamic models. Initially, this will allow us to carefully evaluate the quality of our raft tracking calculations. Once the approach is established to be accurate, however, these high-resolution flows will be used to numerically calculate the effective advection and dispersion of rafts in the Delta channel under consideration. This analysis will be focused on parameterizing the effects on raft transport of structures and processes that are unresolved in typical Delta hydrodynamics models. An example of a process that is likely to be important to parameterize is the trapping and retention of rafts along the perimeter of channels due to off-axis wind forcing, and the resulting along-channel dispersion of rafts. In order to examine the effective advection and dispersion of rafts in Delta channels, we propose to pursue this combination of field and numerical studies of raft transport in locations of increasing complexity: first in idealized, straight channels, then in a natural, sinuous channel and a channel junction, and finally throughout the entire Delta. Our research is strongly motivated by the desire to provide a predictive model of dispersion in the Delta for floating objects that respond to both wind and tidal forcing. Immediate applications involve the movement of hyacinth rafts and egeria to evaluate potential management strategies. Important future applications are likely to include consideration of other biological invasions, due to the potential for rafts to provide a transport pathway, and analysis of the movement of accidental or intentional releases of floating material in the Delta.
    Science topics None specified
    Updated November 29, 2022
  • Title

    The Consequences of Operational Decisions on Water Quality: Reconciling Delta Smelt, Salmon, and Human Needs

    Lead Contra Costa Water District [CCWD]
    Description The purpose of this project is to assess the consequences of actions taken to protect threatened or endangered Chinook salmon species relative to other upstream and in-Delta water management actions that have changed seasonal salinity in the Delta, thus reducing the ability of delta smelt to survive as a species;and, to investigate with modeling scenarios the potential to ameliorate this trade-off with specific operational actions.
    Science topics Delta Smelt, Chinook Salmon
    Updated April 29, 2022
  • Title

    Are Apparent Sex Reversed Chinook Salmon a Symptom of Genotoxicity?

    Lead University of California - Davis [UC Davis]
    Description Goal was to test the relative importance of chemical stressors on population viability and genetic diversity for fall-run Chinook salmon (in association with environmental contaminant exposure in the Central Valley delta).
    Science topics Chinook Salmon
    Updated April 29, 2022
  • Title

    Using Flowcam Technology to Measure High Frequency Spatial and Temporal Variation in Phytoplankton and Zooplankton Species Composition and Develop State-of-the-Art Plankton Monitoring

    Lead California Department of Water Resource [DWR]
    Description The purpose of this project is to use the new imaging-in-flow instrument FlowCAM to rapidly and automatically identify, enumerate and estimate biomass for in situ and laboratory phytoplankton and zooplankton species composition samples in the SF Estuary.
    Science topics Phytoplankton, Zooplankton
    Updated April 29, 2022
  • Title

    A Non-Point Source of Contaminants to the Estuarine Food Web: Mobilized Particles from the Intertidal Zone

    Lead California State University [CSU]
    Description The purpose of this research project is to quantify the process of contaminant concentration and resuspension of shallow and intertidal cohesive sediments at sites along the salinity gradient from Prospect Island to San Pablo Bay. This research is important because it helps to understand the pathways by which contaminants are assimilated, which is essential to appropriately manage habitat areas.
    Science topics None specified
    Updated April 29, 2022
  • Title

    A Statistical Model of Central Valley Chinook Incorporating Uncertainty

    Lead R2 Resource Consultants Inc.
    Description The purpose of this project is to develop a statistical modeling approach to the two Central Valley Chinook Salmon species that incorporates mortality in all phases of salmon life history, and includes the effects of uncertainty in assessing population status, guiding future research, and making management decisions.
    Science topics Chinook Salmon
    Updated April 29, 2022
  • Title

    Quantifying Factors Affecting Migration Routing and Survival of Juvenile Late-Fall Chinook Salmon in the Sacramento-San Joaquin River Delta

    Lead U.S. Geological Survey [USGS]
    Description Juvenile Chinook salmon emigrating from natal tributaries of the Sacramento River must negotiate the Sacramento-San Joaquin River Delta where they disperse among the Delta's complex channel network. Natural processes and water management actions affect the fraction of the population using different migration routes through the Delta and survival within those routes, but quantifying these relationships has proven difficult. Since 2006, acoustic telemetry techniques have been used to quantify both movement among migration routes and survival within routes, providing the first insights into how route-specific survival contributes to population-level survival in the Delta. In this project, we propose to use existing acoustic telemetry data from multiple sources to 1) Quantify factors affecting migration routing of juvenile salmon emigrating from the Sacramento River, 2) Quantify factors affecting survival of juvenile salmon within specific migration routes, and 3) Simulate population-level survival through the Delta under a limited number of historical and operational scenarios. Collating telemetry data from multiple sources over numerous years offers a unique opportunity to identify important relationships that might otherwise be difficult to detect for any particular study in a given year. Quantifying such relationships is critical to informing resource management that seeks to balance use of water resources with recovery of endangered salmon populations.
    Science topics Chinook Salmon
    Updated April 29, 2022
  • Title

    Nutritional Quality of Zooplankton as Prey for Fish in the Sacramento-San Joaquin Dalta

    Lead University of California - Davis [UC Davis]
    Description Primary consumers (zooplankton) are a critical trophic link for energy transfer to upper trophic levels and a key food source for threatened and endangered fish species in the Delta. The zooplankton community was shaped by large spatial and temporal changes in both abundances and species composition that affected quantity of zooplankton carbon. It is also expected that taxonomic shifts affected quality of zooplankton carbon for fish due to altering biomass transfer at the base of the food web that can profoundly influence nutritional quality and population dynamics at higher trophic levels. Yet the biochemical composition of plankton remains largely unstudied in this system despite the fact that the importance of zooplankton nutritional quality for fish is one potential major component for the long-term decline and more recent collapse of pelagic fish species. The proposed research aims to measure essential nutritional status (stoichiometry, fatty acids, sterols) for zooplankton taxa and will calculate food-quality indices for fish. On the basis of nutritional plankton and biomass values, spatial patterns as well as long-term and recent changes in plankton quality associated with compositional shifts will be estimated. We propose that through integrating plankton food-quality into the management and restoration plan for the Delta, the dynamics of the ecosystem can be viewed from a new perspective that has key implications for understanding the decline in pelagic organisms.
    Science topics Zooplankton
    Updated April 29, 2022
  • Title

    An Open-Source, Three-Dimensional Unstructured-Grid Model of the Sacramento/San Joaquin Delta: Model Construction and Application to Delta Hydrodynamics and Temperature Variability

    Lead Stanford University
    Description Motivated by the need to predict transport in the Delta, this project will apply the open-source, unstructured-grid computer model, SUNTANS (Stanford Unstructured Nonhydrostatic Terrain following Adaptive Navier Stokes simulator) to the Sacramento/San Joaquin Delta. SUNTANS solves the governing equations of fluid flow on a grid that permits fine detail in areas of particular interest in the Delta, while allowing us to include the entirety of the Bay/Delta system so as to properly model oceanic and estuarine influences on the Delta We have two aims:(1) to carry out the model development needed to apply SUNTANS to the Delta;(2) to apply the model to look at aspects of the physical variability of the Delta that are critical to ecosystem function and to understanding how physical processes in the Delta affect ecosystem function, most notably entrainment of fish and other organisms by the export facilities. In particular, we propose to look at flow behavior at channel junctions, a key aspect of Delta hydrodynamics that influences dispersion in the Delta and thus the transport of biota, nutrients and contaminants. We also will examine the dynamics of spatial and temperature variability in the Delta in response to tides, atmospheric forcing, river flows, and diversions, variability that must be properly calculated to forecast how climate change and altered project operations may affect key species like Delta Smelt. We will carry out new fieldwork to support our modeling.
    Science topics Water temperature
    Updated April 29, 2022
  • Title

    Assessing Sediment Nutrient Storage and Release in the Delta: Linking Benthic Nutrient Cycling to Resotration, Aquatic Vegetation, Phytoplankton Productivity, and Harmful Algal Blooms

    Lead U.S. Geological Survey [USGS]
    Description Nutrients in sediment play a large role in influencing food webs, harmful algal blooms, aquatic vegetation, and drinking water quality. This study will investigate the amount, types, and dynamics of nutrients in Delta sediments. It will also examine sediment microbial communities that mediate these processes. Results of this study will help determine how the planned reduction in nutrient inputs to the Delta will effect sediment nutrients and microbial communities following the upgrade of the Sacramento Regional County Sanitation District’s wastewater treatment plant. Data will also inform how wetland restoration and invasive aquatic vegetation influence sediment nutrients and microbial communities. These data will contribute to improving computer models that inform large-scale nutrient management actions.
    Science topics Aquatic vegetation, Benthic, Cyanobacteria, Harmful algal blooms HAB, Nitrogen, Nitrogen / ammonia, Nutrients, Phytoplankton, Sediments
    Updated November 28, 2022
  • Title

    An Evaluation of Sublethal and Latent Pyrethroid Toxicity Across a Salinity Gradient in Two Delta Fish Species

    Lead Oregon State University
    Description Pyrethroids are a type of insecticide frequently detected in the San Francisco Bay and Delta (SFBD). They are highly toxic to fishes and may contribute to their decline. The Central Valley Water Resources Control Board has adopted regulations for many pyrethroids. These concentration goals for Delta surface waters are quite stringent. However, they do not take into account non-lethal effects in fishes, particularly during the early life stages and at the salinity conditions we see in the SFBD. Understanding non-lethal effects in fish is vital to influencing population health. This study investigates pyrethroid toxicity on Delta smelt and Inland Silverside embryos, while accounting for changing SFBD salinity and other factors such as sediment. Results will inform the development of pesticide regulation criteria and control efforts, furthering the protection of SFBD fishes.
    Science topics None specified
    Updated April 29, 2022
  • Title

    Integrated Science and Management of Nutrient, Salt, and Mercury Export from San Joaquin River Wetland Tributaries to the Delta

    Lead University of California - Merced [UC Merced]
    Description Mercury, salinity, and nutrients such as nitrogen and phosphorus are major contaminants of concern and are an understudied source of water quality impairment to the Delta. This study will (1) examine seasonal variation and transfer of salt, nutrients, and mercury out of managed wetlands;(2) establish and verify whether other routinely monitored water components can serve as reliable alternatives (proxies) for detecting mercury and nutrients;(3) integrate monitoring data and proxy relationships to estimate levels of contaminants;and (4) develop science-based strategies for adaptive co-management of salt, nutrients, and mercury from seasonal wetlands to improve water quality in the Delta. Outcomes from this study will provide improved best practices and guidelines for management of salt, nutrients, and mercury in wetlands. Results will also address key knowledge gaps identified in the Delta Nutrient Research Plan and provide support for the Delta Mercury Control Plan.
    Science topics Nutrients, Salinity, Hg and methyl mercury
    Updated April 29, 2022
  • Title

    Pesticide risk analyses and management actions, chemical fate and transport

    Lead University of California - Santa Barbara [UCSB]
    Description This project work will model the risk of pesticide pollution in 225 sub-catchments of the Sacramento-San Joaquin Bay-Delta. The model will account for water management practices, land use, pesticide use rates, and cumulative pesticide stress. Additionally, this work will produce a web-based tool to simulate current and future risks based on the ranking of primary sources of pesticide contribution. This work will provide a framework to predict risk from chemical stressors. Specific objectives are: (1) enhanced pro-active chemical risk assessment, (2) creation of a tool which enables science-based chemical use decisions, (3) improved risk screening for vulnerable areas, and (4) identification of adverse effects of current and future chemical use strategies.
    Science topics Herbicides
    Updated April 29, 2022
  • Title

    Using existing datasets to understand multi-scale changes in and controls on biogeochemistry in the SF Bay-Delta

    Lead University of California - Santa Cruz [UCSC]
    Description In collaboration with the United States Geological Survey, this research will explore temporal and spatial variability of carbon and nitrogen biogeochemistry across the San Francisco Bay-Delta. This science synthesis will capitalize on existing multi-year isotope datasets to gain new insights useful for understanding future changes in the system. The results generated from this two-year data synthesis project will be useful for improving our current understanding of factors driving changes in SF Bay-Delta biogeochemical processes. Results will also be informative for understanding the imminent changes coming to the from the Sacramento Regional Wastewater Treatment Plant upgrade.
    Science topics Nitrogen
    Updated November 17, 2022
  • Title

    Phytoplankton Communities in the San Francisco Estuary: Monitoring and Management using a Submersible Spectrofluorometer

    Lead California Department of Water Resource [DWR]
    Description The purpose of this project is to evaluate a new submersible spectrofluorometer, the bbe FluoroProbe, for phytoplankton monitoring and management in the SFE. Secondly, this project seeks to investigate high-frequency patterns in spatial phytoplankton group distributions among Delta habitats and along gradients from the western Delta and northern San Francisco Bay.
    Science topics None specified
    Updated April 29, 2022
  • Title

    Biomass and Toxicity of a Newly Established Bloom of the Cyanobacteria Microcystis aeruginosa and its Potential Impact on Beneficial Use in the Sacramento-San Joaquin Delta

    Lead California Department of Water Resource [DWR]
    Description Monitoring and simple analysis of the extent of this cyanobacteria in the Delta, and preliminary exploration of the impacts of cystins on drinking water quality, and human and wildlife health.
    Science topics None specified
    Updated April 29, 2022
  • Title

    Suisun Marsh Salinity Control Gate Study

    Lead California Department of Water Resource [DWR]
    Description Description Suisun Bay and Marsh are a key part of the habitat for Delta Smelt, but during drier periods such as summer, Delta Smelt may be at least partially excluded from Suisun Marsh due to high salinities. The purpose of this proposal is to provide scientific support a management action for Smelt, operation of the Suisun Marsh Salinity Control Gates (SMSCG). This facility is currently to tidally pump water into the Marsh to improve fall and winter habitat conditions for waterfowl, but could also provide a tool to manage aquatic habitat for Delta Smelt in other periods. Specifically, by using the SMSCG to direct more fresh water in Suisun Marsh, our prediction is that reduced salinities will improve habitat conditions for Delta Smelt in the region. Need The status of Delta Smelt is dire. As part of the Resources Agency's Delta Smelt Resiliency Strategy, in August 2018 we conducted pilot operations of the SMSCG to support Delta Smelt , with promising results. Based on this early success, we expect that the SMSCG will be used as a seasonal tool to support Delta Smelt in summer-fall in coming years as part of the coming FWS Biological Opinion and DFW ITP. Neither has been completed, but SMSCG operations for fish are expected to be required in each. Hence, the proposed study is intended to provide a scientific evaluation and guidance for an expected SMSCG action in 2020. Objectives The primary objective of this project is to evaluate the effectiveness of the SMSCG action. Questions to be addressed include: • Did the action improve habitat conditions for Delta Smelt in the Suisun Region? • Does the Suisun Region typically have better habitat and food web conditions than the upstream River Region? • Do Delta Smelt respond favorably to the SMSCG flow action? • Does operation of the SMSCG affect other fishes and clams?
    Science topics Salinity
    Updated April 29, 2022
  • Title

    Identification of environmental conditions driving cyanobacterial multi-species blooms and their toxicity using genome resolved metagenomics

    Lead University of California - Berkeley [UC Berkeley]
    Description In recent years the Sacramento-San Joaquin Delta has seen an increase in toxigenic cyanobacterial diversity and abundance during harmful cyanobacterial bloom events (cyanoHABs). This increased cyanobacterial diversity parallels an increase in the number of detected toxins during cyanoHABs outside of the typical microcystins that have been previously identified. Currently there are critical knowledge gaps around the full toxigenic potential of rising diversity of cyanobacterial species, and how the total microbial community of cyanoHABs interacts within itself and with external abiotic factors in ways that may promote the expansion of new and diverse cyanoHABs. The goal of this study is to use genome-resolved metagenomics to study the genetic diversity and metabolic and toxigenic potential of cyanoHABs to i) identify cyanobacterial taxa composition and their potential for toxins biosynthesis ii) characterize species succession dynamics and metabolic processes of the full microbial community during cyanobacterial bloom phases, iii) correlate environmental factors and toxin titers with biological components of diverse bloom phases to explain the development of cyanobacterial multi-species dominated bloom.
    Science topics Cyanobacteria, Harmful algal blooms HAB
    Updated November 30, 2022
  • Title

    Harmonizing pesticide risk management of the Bay Delta watershed

    Lead University of California - Santa Barbara [UCSB]
    Description Objective One: Employ high-resolution irrigation data to predict pesticide risks in the Bay Delta Watershed (BDW). This effort will enable more accurate prediction of health hazards given irrigation is a key driver of pesticide transport to surface and ground water. The effects of irrigation methods to pesticide transport vary significantly in their contribution of pesticides to runoff/leachate due to effects on pesticide build-up/wash-off and soil moisture conditions antecedent to precipitation. Objective Two: Provide harmonized species indicators of pesticide toxic burden releases for the Bay Delta which consider diverse resident taxa and human health. California benefits from a plethora of academic researchers, environmental advocacy groups, municipalities, and government groups working to protect the environment. Due to the complexities of this work, efforts often focus on a particular taxa or environmental compartment. This introduces a significant challenge in evaluating the pros and cons of any particular pesticide use. Currently, 79 of the 208 watersheds near the Delta which receive agricultural pesticide applications have increasing pesticide toxic burdens to aquatic taxa. Enabling evaluation of chemical alternatives which reduce toxic burdens across taxa is important to restoring ecosystem health. Objective Three. Quantify the variability of pesticide degradation and the significance to pesticide risk in the BDW. The degree to which pesticides remain in the soils of the BDW increases their probability for accumulation, transport, and nontarget affects. Degradation is highly variable in soils; an investigation of 10 pesticides in 8 soil types under equivalent conditions demonstrated a mean difference of 540% in the minimum and maximum rate of degradation for pesticides evaluated. Yet, researchers and regulators often only employ the median observed rate of degradation which may under predict risks to waterbodies of the BDW.
    Science topics Pesticides
    Updated November 30, 2022
  • Title

    From Microbes to Zooplankton, What Defines a Beneficial Wetland?

    Lead San Francisco State University, Estuary & Ocean Science Center
    Description Our study will characterize species diversity at multiple levels of biological organization in the water column of restoring wetlands in the upper San Francisco Estuary and Delta (SFE), from bacteria to fishes. In doing so, we will also describe the foodweb benefits being provided to larval fishes, including longfin smelt, through additional dietary DNA analysis. We will use the species diversity we find in the water column to identify a subset of biota that are indicative of the conditions present in wetlands in different stages of restoration (early, intermediate, and mature) and identify connections between those indicators to the foodweb resources being provided to higher trophic levels. We will study 3-4 wetlands in each of 3 stages: early (unvegetated), intermediate (partially vegetated and partially channelized), and mature (fully vegetated and channelized) wetlands.
    Science topics Crustaceans, Cyanobacteria, Estuaries, Fish, Food webs, Habitat, Habitat restoration, Insects, Invertebrates, Longfin Smelt, Other species, Other zooplankton, Pelagic fish, Phytoplankton, Predation, Restoration, Salinity, Saltwater / freshwater marshes, Tidal wetlands, Wetlands, Zooplankton
    Updated January 31, 2024
  • Title

    Continuous Flow and Water Quality Monitoring Network in the Sacramento-San Joaquin Delta

    Lead U.S. Geological Survey [USGS]
    Description This project envisions the continuation, expansion, and further integration of high frequency monitoring for flow, water quality (including chlorophyll and nutrients), sediment, as well as biological responses at key locations in the Delta and Suisun Bay. The physical properties monitored by the fixed-station network are the primary drivers of the habitat conditions and biological responses that management actions hope to achieve. Nutrient dynamics are explicitly measured at select stations to improve our understanding of how physical dynamics, water quality and landscape features shape the base of Delta food webs. These data will provide information about drivers linked to food quantity and quality as well as potential toxins production by harmful algae. Suspended-sediment monitoring provides an understanding of the inputs and internal exchanges between regions, locations of sources and sinks, and provides insight into the underlying cause of turbidity variability in the study area. Suspended-sediment measurements gage the availability of suspended sediment for existing marshes and for proposed large-scale marsh restoration efforts in the Delta. There are a total of 5 sub-tasks in this project: • Task 1: Hydrodynamics Team – Fixed Station Network Operation and Maintenance • Task 2: BioGeoChemistry Team -- Fixed Station Network Operation and Maintenance • Task 3: Delta Sediment Team – Fixed Station Network Operation and Maintenance • Task 4: Bay Sediment Team – Fixed Station Network Operation and Maintenance • Task 5: Project Management
    Science topics Chlorophyll A / B, Conductivity, Dissolved oxygen, Flows, Nutrients, pH, Phytoplankton, Sediments, Stage, Surface water / flow, Tides, Turbidity, Velocity, Water operations / exports, Water temperature
    Updated January 19, 2024
  • Title

    The Relative Contributions of Contaminants to Ecological Risk in the Upper San Francisco Estuary

    Lead Delta Stewardship Council - Delta Science Program
    Description This project developed methods to calculate risk of mixtures of pesticides for the Upper San Francisco Estuary (USFE). We used curve fitting to estimate the exposure-response curves for each individual chemical and then the mixture. For the mixtures, the models were normalized for specific ECx values. In that way, the curve fitting was optimized for effects that are comparable to most threshold values. A Bayesian network was built that incorporated five different pesticides and mercury. The input distributions of the contaminants were measured amounts from each of the six risk regions. We also explored three different methods of combining the results of the three pathways – additive, average, and expert judgement. The initial result was the BN model’s Predicted Fish Mortality (%). The Sensitivity analysis (mutual information) identified the most important components of the Bayesian network in determining the toxicity. The top two pathways were the Malathion/Diazinon Mortality pathway and the Mercury Mortality pathway. For the individual nodes Mercury, Bifenthrin and Season were key. Currently, we are completing the risk assessment network by adding Chinook salmon and Delta smelt population pathways to estimate risk to the six Risk Regions. A major accomplishment was the demonstration that curve fitting using additive models for mixtures can be used to estimate fish toxicity in this proof-of-concept model. Bifenthrin, the specific risk region, and season were the inputs that were most important to the calculation. Factors determining macroinvertebrate community structure were identified using multivariate tools. Water quality parameters were the most important in determining clusters of similar macrobenthic communities. Because contaminants were not statistically significant in determining these patterns, further analysis of macroinvertebrate community structure was postponed. At this time, the techniques applied in this program appear applicable to estimating risk due to the variety of chemicals and other stressors to the multiple endpoints under management in the USFE.
    Science topics None specified
    Updated January 24, 2024
  • Title

    Analysis of Delta Salinity during Extended Drought – Pilot Project

    Lead California Department of Water Resource [DWR]
    Description Managing California water operations for multiple priorities under long term drought conditions is becoming an increasing challenge which is compounded by potential sea level rise. This project is a pilot exercise to demonstrate the utility of hydrodynamic and salinity transport models in to understand options for salinity management under extended drought combined with climate change and sea level rise. The project will also consider how to make model outputs available and relevant to other modeling and environmental management decision making efforts. The full range of potential sea level rise, restoration and operational actions is extensive, involving many potential combinations of individual actions. Therefore, it is difficult to fully explore potential actions with high resolution multi-dimensional models. The proposed approach is to use high resolution multi-dimensional flow and transport models to evaluate changes in transport in the Delta under sea level rise, restoration, and operational scenarios. The predicted changes to salinity for a given scenario will inform operations modeling in CALSIM through re-calibration of an ANN to approximately account for the changed salinity response of the estuary. Operations modeling incorporating the revised ANN will then estimate Delta inflows and overall water cost to meet Delta standards for the scenario. “Round-trip” modeling will be performed using the detailed Delta models to verify that the predicted hydrologic inputs allow appropriate compliance with water quality standards and will provide other metrics related to Delta transport.
    Science topics Conductivity, Drought, Landscape change, Restoration planning, Sea level rise, Water operations / exports
    Updated January 29, 2024
  • Title

    Source characterization and biogeochemical consequences of wastewater and agricultural C, N, and P inputs to the Sacramento-San Joaquin Delta region.

    Lead University of California - Santa Cruz [UCSC]
    Description This project aimed to characterize the sources of carbon, nitrogen, phosphorous and sulfur compounds from wastewater treatment plant and agricultural discharge in the region. Stable isotope measurement provides elemental signatures that can be used to trace compounds to their sources. Use of this methodology requires that researchers first characterize the stable isotope composition of sources—or fingerprint the suspects. By determining the stable isotope composition of various compounds in wastewater and agricultural drainage sources, this project aimed to build a better understanding of how these compounds are affected by different wastewater treatment agricultural land use practices. In addition, the project has provided a base of knowledge to better understand how these compounds are transported and taken up in the delta environment.
    Science topics Carbon, Nitrogen, Phosphorous, Wastewater discharge
    Updated February 26, 2024