To support management planning in Suisun Marsh, this project is developing a body of science and tools to understand past, present, and potential future changes to the Marsh’s ecological patterns, processes, and functions. This project builds on SFEI’s prior work in the Delta, extending historical ecology mapping, landscape change studies, and the Landscape Scenario Planning Tool to cover Suisun's historical and present-day landscapes. Through spatially explicit representations of the historical function and condition of the marsh and analyses of landscape metrics, this project is evaluating changes over time in landscape support for ecosystem functions and services in Suisun. In order to incorporate diverse perspectives into planning resources, project activities include engagement with local tribes and community members to understand community interests, priorities, and uses of the Marsh. Findings will be shared through a report and article for both technical and general audiences, and spatial analyses and data layers will be made available through the Landscape Scenario Planning Tool.
The proposed project is driven by the need to understand how land use has changed historically in California's Central Valley due to various drivers including environmental changes and socio-economic developments. Given the region's dependency on agriculture and its vulnerability to climate change—marked by shifts in precipitation patterns and water availability—it's crucial to model these dynamics accurately to forecast future conditions and plan effectively. Using Agent-Based Modeling (ABM) provides a sophisticated means to dissect past interactions between land use and environmental factors at a granular level. This historical understanding is pivotal as it sets the stage for projecting future scenarios. Additionally, the integration of future hydrology data generated from the CalSim3 model and socio-economic scenarios allows for a comprehensive analysis of potential future states. This analysis aims to explore strategic land use modifications that can meet future socio-economic goals under varying water availability scenarios.
This research supports several key science actions, making it highly relevant to current policy discussions. It provides actionable insights into large-scale experiments (Science Action 1C), assesses the impact of climate on ecosystems (Science Action 6A), and explores water allocation strategies (Science Action 6E), thereby equipping policymakers and stakeholders with the necessary tools for informed decision-making. These decisions are crucial for maintaining ecological flows and ensuring the longterm viability of both the agricultural sector and the natural ecosystems upon which they depend.
On-going subsidence of organic soils threatens the physical structure of the Delta, its central role in the state’s water system, many diverse species that depend on it, and threatens future agricultural production. Knowledge of baseline emissions and subsidence rates is important for developing alternative land use scenarios for maximizing benefits for sequestering carbon, reducing or reversing subsidence, providing income for landowners via the carbon market, and reducing flood risk. This project will gather, process, and analyze recent data in the Delta for land-surface elevation changes, greenhouse gas fluxes measured by eddy covariance and gas chambers, soil organic matter content, depth-to-groundwater, and soil organic thickness. These data will be used to update and calibrate the SUBCALC model and refine model inputs to improve the model’s ability to simulate subsidence and CO2 emissions. Collaboration with the Jet Propulsion Laboratory and UC Berkeley will allow use of CO2 flux and InSAR data to calibrate and validate the SUBCALC model. The Delta Conservancy is another partner assisting with assessment of modeling for land-use conversion planning. TNC and Metropolitan Water District are partners to assist with use of SUBCALC for engagement of the carbon market and collaborate with the Suisun RCD to improve estimates of subsidence and CO2 emissions.
Managing California’s water supply is complex, requiring careful coordination to ensure sustainability, water quality, and the protection of public and environmental health. In the Sacramento–San Joaquin Bay-Delta, hundreds of datasets from studies and monitoring programs are used to assess conditions and inform key operational decisions. However, these datasets are often fragmented across agencies and stored in inconsistent formats, making it time-consuming for analysts and researchers to locate and use the data effectively.
This project aims to enhance the Bay-Delta Live (BDL) data management platform (www.baydeltalive.com) by integrating datasets from the California Department of Water Resources’ Water Data Library (WDL). The primary focus is on water quality and environmental monitoring data. By streamlining access to these resources, the project will improve the discovery, retrieval, and analysis of water-related datasets across multiple sources.
Key outcomes include:
This work will support more informed decision-making and help ensure the long-term safety, reliability, and ecological integrity of California’s water resources.