This project work will model the risk of pesticide pollution in 225 sub-catchments of the Sacramento-San Joaquin Bay-Delta. The model will account for water management practices, land use, pesticide use rates, and cumulative pesticide stress. Additionally, this work will produce a web-based tool to simulate current and future risks based on the ranking of primary sources of pesticide contribution. This work will provide a framework to predict risk from chemical stressors. Specific objectives are: (1) enhanced pro-active chemical risk assessment, (2) creation of a tool which enables science-based chemical use decisions, (3) improved risk screening for vulnerable areas, and (4) identification of adverse effects of current and future chemical use strategies.
This project focuses on nitrogen and carbon cycling within the Bay-Delta, both before and after planned 2021 upgrades to the Sacramento Regional Wastewater Treatment Plant (SRWTP). We will measure in situ benthic nitrate (NO3- ) and oxygen (O2) fluxes using a new non-invasive technique, which provides high frequency continuous data over a much larger sediment surface area than traditional methods. The SRTWP currently represents one of the largest point sources of nitrogen to the Bay-Delta, with the upgrades projected to cut nitrogen outputs from the plant by ~65%. This project will help assess the efficacy of this major management action and our results will add to biogeochemical models for the Bay-Delta.