This project work will model the risk of pesticide pollution in 225 sub-catchments of the Sacramento-San Joaquin Bay-Delta. The model will account for water management practices, land use, pesticide use rates, and cumulative pesticide stress. Additionally, this work will produce a web-based tool to simulate current and future risks based on the ranking of primary sources of pesticide contribution. This work will provide a framework to predict risk from chemical stressors. Specific objectives are: (1) enhanced pro-active chemical risk assessment, (2) creation of a tool which enables science-based chemical use decisions, (3) improved risk screening for vulnerable areas, and (4) identification of adverse effects of current and future chemical use strategies.
This project focuses on nitrogen and carbon cycling within the Bay-Delta, both before and after planned 2021 upgrades to the Sacramento Regional Wastewater Treatment Plant (SRWTP). We will measure in situ benthic nitrate (NO3- ) and oxygen (O2) fluxes using a new non-invasive technique, which provides high frequency continuous data over a much larger sediment surface area than traditional methods. The SRTWP currently represents one of the largest point sources of nitrogen to the Bay-Delta, with the upgrades projected to cut nitrogen outputs from the plant by ~65%. This project will help assess the efficacy of this major management action and our results will add to biogeochemical models for the Bay-Delta.
The Wetland Regional Monitoring Program (WRMP) Fish and Fish Habitat Monitoring project is a collaborative effort to track biological responses to tidal wetland restoration in the San Francisco Estuary. Monthly sampling is conducted across a network of benchmark, reference, and project restoration sites in the South Bay and North Bay, with the goal of evaluating how wetland restoration influences fish assemblages, habitat use, and ecological condition.
The study uses primarily otter trawls to monitor fish and macroinvertebrate communities. Standardized field methods align with those used in long-term monitoring programs to ensure comparability and data integration across regions. Environmental data, including water temperature, salinity, and dissolved oxygen, are collected in tandem with biological sampling to assess habitat quality and seasonal dynamics.
The program addresses WRMP Guiding Question #4: How do policies, programs, and projects to protect and restore tidal marshes affect the distribution, abundance, and health of fish and wildlife? The data support adaptive management, regulatory compliance, and science-based restoration planning by identifying key habitats, tracking restoration performance, and detecting regional patterns in species composition and abundance over time.