This project aims to quantify the impacts of common reed (Phragmites) invasion on community structure and ecosystem function during early stages of tidal restoration in wetlands. The study will focus on the Tule Red Tidal Restoration site in Suisun Marsh. The research aims to produce a conceptual model that will describe habitat structure, invertebrate communities, and predator use of wetlands affected by Phragmites invasion. The conceptual model resulting from this study will guide future predictions of wetland response to invasion and to develop mitigation strategies. Data collected will also support food web models and the understanding of invasive plants as stressors, as well as foster translational science to the management community.
This study focuses on understanding how restored tidal wetlands with different physical configurations function as refuge and rearing habitat for fishes, including native and imperiled species such as delta smelt and juvenile Chinook salmon. This research will assess the spatial distribution of predation risk as it varies within and across tidal wetlands. The proposed research will generate a statistical model that helps predict predation outcomes from various restored tidal wetland designs and channel configurations. This will be a powerful tool for managers to forecast how proposed habitat restoration or water management actions may impact native fish populations.
Pesticide and nutrient inputs from human activities are present in the Sacramenot-San Joaquin Bay-Delta, but the impact of these stressors together on algae is not well known. This research will examine the impacts of herbicides and nutrients on the growth and stress responses of phytoplankton and cyanobacteria present in the San Francisco Estuary. The algae in the delta are diverse with critical ecological effects, ranging from toxin-producing cyanobacteria that form hazardous algal blooms to benthic diatoms and green algae that make up the bulk of the aquatic food web. Contaminants and herbicides can cause changes in algae cellular health which may impact population growth. Understanding algal sub-lethal stress responses will improve our understanding of stressors on the bay-delta food web and bloom formation.
This project aims to characterize and quantify where detrital material (decaying plant matter) originates within wetlands, the composition of that material, and how export of detrital particles occurs. This project will combine powerful characterization tools and techniques that scale from molecules to ecosystems to assess spatial and temporal trends in particle sources, species and composition. Because restoration in the Sacramento-San Joaquin Delta will fundamentally alter particle distribution and food availability for aquatic organisms, this study will inform habitat restoration efforts and the revival of native fish populations. The tools developed and adapted for this project may inform management response during extreme conditions and climate events by helping to identify areas that may act as refugia for species.
This study will investigate fish swim performance in response to temperature, using salmon and two of its known predators: largemouth bass and Sacramento pikeminnow. The researcher will assess swim performance metrics and predation risk inside and outside the ideal thermal range of each species to determine if a temperature advantage predicts salmon survival in predation scenarios. This project’s results will provide a mechanistic understanding of how temperature stress may influence mortality risk of juvenile Chinook salmon through predation, which will offer a more holistic perspective on the management of this species
This project aims to test the feasibility of using novel acoustic transmitters to track Delta smelt in the San Francisco Bay-Delta. Successful utilization of acoustic telemetry to track Delta smelt can provide researchers and resource managers with information about the species’ habitat preferences, the effects of water-management practices on Delta smelt movement and distribution, and the success of ongoing supplemental release efforts. The assessment of feasibility will include a comprehensive analysis of both the lethal and sublethal effects of surgical tag implantation on Delta smelt, as well as the development of a species-specific tagging protocol.
Bridging Science and Community: Engaging Youth in Delta Conservation through the Spinning Salmon Program is designed to enhance scientific understanding and engagement among underrepresented youth in the Sacramento-San Joaquin Delta. Leveraging the Youth-Focused Community and Citizen Science (YCCS) framework, the program connects youth to local ecosystems while addressing ecological challenges such as the Thiamine Deficiency Complex affecting Central Valley Chinook Salmon. The objectives focus on enhancing students' understanding of scientific concepts and processes, fostering science identity, self-efficacy, and environmental science agency, and cultivating a sense of environmental stewardship. Additionally, the program emphasizes the active involvement of community members in co-creating and refining educational strategies, ensuring these approaches are tailored to the diverse cultural and educational needs of the Delta community. This aligns with Science Action C under Management Need 4 in the 2022-2026 Science Action Agenda (SAA), contributing to a broader understanding of community-engaged research methodologies.
Due to pervasive anthropogenic influences (e.g., habitat alteration, climate change), current rates of biodiversity loss in the Sacramento-San Joaquin Delta are unprecedented. Application of appropriate management regimes and mitigation measures thus require effective biological monitoring to adaptively manage systems. Non-invasive environmental DNA (eDNA)-based tools for endangered species monitoring have gained attention as a complementary approach to traditional sampling because of their increased sensitivity and accurate quantification. However, the unique characteristics of environmental RNA (eRNA) make it a novel tool, allowing us to gain additional information that is not possible to obtain with eDNA. Using novel eRNA tools to improve detection and quantify health status of Smelt has only been theorized and remains to be empirically tested. Both Delta and Longfin Smelt species were historically ubiquitous in the Sacramento-San Joaquin Delta, but have declined precipitously over the past several decades. One source of mortality is entrainment into the south Delta water export pumps. Although the entrainment of juvenile and adult smelt has been regularly monitored at fish salvage facilities, entrainment of larval smelt (< 20 mm) is not quantified, thus remains largely unknown. Moreover, given the current climate change effect (e.g., increased heat stress), an understanding of how these endangered species will respond to acute stress response in the wild is lacking.
The San Francisco Estuary (SFE) supports the southernmost reproductive population of longfin smelt (LFS) along the Pacific Coast. Long term monitoring studies have observed a precipitous decline of LFS in the SFE over the past several decades, and the San Francisco Bay-Delta Distinct Population Segment was listed as endangered under the Endangered Species Act in July of 2024. There are important gaps in our understanding of LFS ecology and movement within the highly urbanized SFE, posing challenges to the development of effective recovery strategies. More complete information about the movement and migration of LFS in the wild can lead to improved life-cycle modeling and provide insight into the species’ relationship with temperature, salinity and other habitat features of the SFE. An effective tool to learn about fish migration and movement is through a tracking method known as acoustic telemetry. Until recently this practice has been impossible on small fish such as LFS due to their body size relative to existing acoustic transmitters, or ‘tags’. With recent advances in telemetry technology, we now have an opportunity to implant newly miniaturized acoustic transmitters into adult LFS. However, before the results of telemetry studies utilizing these newly developed transmitters can be used to make inferences about wild populations, it is imperative to determine whether the tagged individuals are surviving and behaving in the same way as their un-tagged counterparts. The study aims to establish post-tagging survival and transmitter retention rates of wild and captive-reared LFS surgically implanted with newly miniaturizes acoustic transmitters, as well as the sublethal effects of transmitter implantation on LFS swimming performance. The results of this study will directly inform the implementation of acoustic telemetry on LFS, aiding in the conservation and recovery of an imperiled native species.
Invasive aquatic vegetation (IAV) is widespread in the Sacramento-San Joaquin Delta (Delta) and its change in coverage has been mapped at the species level using spectroscopy data collected once a year, from 2004 to 2008 and from 2014 to 2019. There was no funding to conduct a similar mapping campaign in 2020. This work aims to collect and analyze imagery in summer of 2020 to fulfill two main objectives. First is to inform the monitoring framework for aquatic vegetation put forth for the Interagency Ecological Program (IEP). Comparing spring and fall imagery of 2019 and the summer imagery of 2020, the project will evaluate which time period is ideal for optimal mapping of aquatic vegetation considering the logistical challenges of airborne imagery acquisition and the phenology of the species being mapped. The project will also contrast the pros and cons of the 3 proposed scenarios in the IEP monitoring framework: 1) two hyperspectral acquisitions a year (2019; “best case” scenario), 2) one acquisition a year (2020, “moderate” scenario) and 3) satellite data based monitoring (the Sentinel-2 study, “bare bones” scenario). The second objective of the project is to determine if the new treatment framework (new herbicide formulations and application schedules) is effective in controlling the old (Brazilian waterweed, water hyacinth) and newly added target weed species (water primrose, alligator weed) in the Delta ecosystem.