This study analyzes 12 notch scenarios in the Fremont Weir in terms of entrainment of juvenile salmon. The goal is to quantify the relative entrainment rates (between 0 and 1) across the suite of scenarios and to identify possible strategies for enhancing entrainment outcomes. This study does not predict future entrainment as models generally do not predict future outcomes so much as highlight trends
In June 2004, a 350-foot levee section gave way west of Stockton, flooding crops and more than a dozen homes, and challenging state officials to protect the state's water supply. What is the risk of that happening again somewhere in the Delta? In light of agricultural fields sinking, the sea level rising, more frequent and severe floods occurring, and earthquakes looming, improvements are estimated to cost $3.8 - $4.3 billion over the next few decades. This study combines 3-D representations with information on the levee's structure to analyze how different levees respond to floods, sea level rise, and earthquakes. State officials released the last Delta Risk Management Strategy a decade ago. Since then, scientists have collected significant amounts of data and have developed new procedures to compute the risk of failure. This work will produce new Delta-wide data sets important for characterizing the hazards coming from floods and earthquakes. It will also develop the best method to conduct levee hazard assessments. Applying this new method will ensure wise investments and effective threat mitigation Delta-wide.
This project work will model the risk of pesticide pollution in 225 sub-catchments of the Sacramento-San Joaquin Bay-Delta. The model will account for water management practices, land use, pesticide use rates, and cumulative pesticide stress. Additionally, this work will produce a web-based tool to simulate current and future risks based on the ranking of primary sources of pesticide contribution. This work will provide a framework to predict risk from chemical stressors. Specific objectives are: (1) enhanced pro-active chemical risk assessment, (2) creation of a tool which enables science-based chemical use decisions, (3) improved risk screening for vulnerable areas, and (4) identification of adverse effects of current and future chemical use strategies.
This project focuses on nitrogen and carbon cycling within the Bay-Delta, both before and after planned 2021 upgrades to the Sacramento Regional Wastewater Treatment Plant (SRWTP). We will measure in situ benthic nitrate (NO3- ) and oxygen (O2) fluxes using a new non-invasive technique, which provides high frequency continuous data over a much larger sediment surface area than traditional methods. The SRTWP currently represents one of the largest point sources of nitrogen to the Bay-Delta, with the upgrades projected to cut nitrogen outputs from the plant by ~65%. This project will help assess the efficacy of this major management action and our results will add to biogeochemical models for the Bay-Delta.
Tradeoffs among objectives in natural resource management can be exacerbated in altered ecosystems and when there is uncertainty in predicted management outcomes. Multicriteria decision analysis (MCDA) and value of information (VOI) are underutilized decision tools that can assist fisheries managers in handling tradeoffs and evaluating the importance of uncertainty. We demonstrate the use of these tools using a case study in the Sacramento River, California, U.S.A., where two imperiled species with different temperature requirements, winter-run Chinook Salmon (Oncorhynchus tshawytscha) and Green Sturgeon (Acipenser medirostris), spawn and rear in the artificially cold Shasta Dam tailwater. A temperature-control device installed on Shasta Dam maintains cool water for Chinook Salmon; however, uncertainties exist related to the effects of temperatures on the spawning and rearing of both species. We consider four alternative hypotheses in models of early life-stage dynamics to evaluate the effects of alternative temperature-management strategies on Chinook Salmon and Green Sturgeon management objectives. We used VOI to quantify the increase in management performance that can be expected by resolving hypothesis-based uncertainties as a function of the weight assigned to species-specific objectives. We found the decision was hindered by uncertainty; the best performing alternative depends on which hypothesis is true, with warmer or cooler alternative management strategies recommended when weights favor Green Sturgeon or Chinook Salmon objectives, respectively. The value of reducing uncertainty was highest when Green Sturgeon was slightly favored, highlighting the interaction between scientific uncertainty and decision makers' values. Our demonstration features MCDA and VOI as transparent, deliberative tools that can assist fisheries managers in confronting value conflicts, prioritizing resolution of uncertainty, and optimally managing aquatic ecosystems.
The Delta is a critical area for sustainable water management, facing significant challenges due to climate change. One of these challenges is in understanding and mitigating maladaptation – climate-aligned actions that may increase vulnerabilities or reduce adaptive capacity. Given the uncertainties surrounding climate change, management actions that seek to achieve high-level goals of climate change adaptation while accounting for maladaptation must be robust, ensuring adequate, multicriteria performance across all climate futures. This work responds to two gaps: (1) the absence of tools for assessing the performance of management actions in the Delta under hydroclimatic uncertainty and (2) a lack of research that explores how stakeholders can account for maladaptation in water governance. Among Delta stakeholders and researchers alike, the discourse and science surrounding ecological flow guidelines, the social complexities of water governance, and the use of integrated climate models to inform robust and adaptive decisions is active and rapidly advancing. This positions the Delta not only as an ideal case study for the academic study of maladaptation, but also as one that is of immediate relevance to stakeholders, responding to several Delta Management Needs (Science Actions 3B, 6E, and 1A) as they concern open science and the exploration of the Delta as a socioecological system and the facilitation of decision-making under climate change and its associated uncertainties.
The proposed project is driven by the need to understand how land use has changed historically in California's Central Valley due to various drivers including environmental changes and socio-economic developments. Given the region's dependency on agriculture and its vulnerability to climate change—marked by shifts in precipitation patterns and water availability—it's crucial to model these dynamics accurately to forecast future conditions and plan effectively. Using Agent-Based Modeling (ABM) provides a sophisticated means to dissect past interactions between land use and environmental factors at a granular level. This historical understanding is pivotal as it sets the stage for projecting future scenarios. Additionally, the integration of future hydrology data generated from the CalSim3 model and socio-economic scenarios allows for a comprehensive analysis of potential future states. This analysis aims to explore strategic land use modifications that can meet future socio-economic goals under varying water availability scenarios.
This research supports several key science actions, making it highly relevant to current policy discussions. It provides actionable insights into large-scale experiments (Science Action 1C), assesses the impact of climate on ecosystems (Science Action 6A), and explores water allocation strategies (Science Action 6E), thereby equipping policymakers and stakeholders with the necessary tools for informed decision-making. These decisions are crucial for maintaining ecological flows and ensuring the longterm viability of both the agricultural sector and the natural ecosystems upon which they depend.
On-going subsidence of organic soils threatens the physical structure of the Delta, its central role in the state’s water system, many diverse species that depend on it, and threatens future agricultural production. Knowledge of baseline emissions and subsidence rates is important for developing alternative land use scenarios for maximizing benefits for sequestering carbon, reducing or reversing subsidence, providing income for landowners via the carbon market, and reducing flood risk. This project will gather, process, and analyze recent data in the Delta for land-surface elevation changes, greenhouse gas fluxes measured by eddy covariance and gas chambers, soil organic matter content, depth-to-groundwater, and soil organic thickness. These data will be used to update and calibrate the SUBCALC model and refine model inputs to improve the model’s ability to simulate subsidence and CO2 emissions. Collaboration with the Jet Propulsion Laboratory and UC Berkeley will allow use of CO2 flux and InSAR data to calibrate and validate the SUBCALC model. The Delta Conservancy is another partner assisting with assessment of modeling for land-use conversion planning. TNC and Metropolitan Water District are partners to assist with use of SUBCALC for engagement of the carbon market and collaborate with the Suisun RCD to improve estimates of subsidence and CO2 emissions.
The Sacramento River and its tributaries serve as critical habitat for the green sturgeon, listed as federally threatened due to its declining population and the impacts of anthropogenic activities such as dam operations and water extraction. We currently lack an understanding of the relationship between flow regimes and sturgeon migration, which is essential for developing effective management strategies to support the species' conservation and for required analysis under state and federal law. By modeling this relationship, this project will contribute to more informed water management, leading to fewer litigation risks for agencies and better outcomes for sturgeon.
This project will model the effects of flow regimes on adult Southern Distinct Population Segment (sDPS) green sturgeon migration within the Sacramento River basin to enhance sturgeon conservation and water management. Specifically, the research will model how flows and temperature affect adult green sturgeon spawning migration. The model will be used to forecast sturgeon movements under various flow scenarios, and the model, the results, and an explanation of their significance will be widely distributed via a website (with a publicly accessible modeling app), a policy brief, a public workshop, and other outreach.
SacPAS serves to provide information integration services to the Central Valley Project Improvement Act and practitioners working on matters related to ESA-listed fishes. The web-based services relate fish passage to environmental conditions and provide resources for evaluating the effects of river management and environmental conditions on salmon passage and survival.
The work performed as part of this agreement includes developing, maintaining, and making accessible query tools and decision support tools to access: historical, real-time and forecasted data; data summaries and visualizations; and hindcasts, forecasts, and scenario-derived predictions from statistical and mechanistic models. More specifically, the objectives are to:
1) Maintain and extend a secondary data repository of historical, real-time, and forecasted fish, environmental, and operational data from the Sacramento River and other river systems in the Central Valley, integrated from primary, public databases.
2) Maintain and improve the data query and visualization tools and services provided through the SacPAS website (https://www.cbr.washington.edu/sacramento/) for historical, real-time, and forecasted environmental and fish data.
3) Conduct research and provide access to modeling tools for fish survival and migration, through the SacPAS website, in support of Reclamation-funded and ESA-mandated activities, especially in efforts to predict, track, and evaluate the efficacy of proposed or actual actions.
Chinook Salmon (Oncorhynchus tshawytscha) populations in California are in decline due to the combined effects of habitat degradation, water diversions, and shifting climate regimes. This project uses archival tissues (otoliths, vertebrae) from modern and ancient spring-run Chinook Salmon to understand how shifts in migration timing and habitat use allowed salmon to cope with highly variable environmental conditions. We will learn how salmon responded to the recent drought and flood periods (2012-2020 CE), the California Gold Rush Period (~1835-1870 CE), the Little Ice Age (~1560-1780 CE), and the Megadrought Period (~1200-1410 CE). This effort will provide the insights needed for developing climate-adapted conservation actions to support salmon into the future.
Managing California’s water supply is complex, requiring careful coordination to ensure sustainability, water quality, and the protection of public and environmental health. In the Sacramento–San Joaquin Bay-Delta, hundreds of datasets from studies and monitoring programs are used to assess conditions and inform key operational decisions. However, these datasets are often fragmented across agencies and stored in inconsistent formats, making it time-consuming for analysts and researchers to locate and use the data effectively.
This project aims to enhance the Bay-Delta Live (BDL) data management platform (www.baydeltalive.com) by integrating datasets from the California Department of Water Resources’ Water Data Library (WDL). The primary focus is on water quality and environmental monitoring data. By streamlining access to these resources, the project will improve the discovery, retrieval, and analysis of water-related datasets across multiple sources.
Key outcomes include:
This work will support more informed decision-making and help ensure the long-term safety, reliability, and ecological integrity of California’s water resources.
The foundation of conserving a species is monitoring its abundance and habitat. This proposed work has three objectives which will help monitor green sturgeon abundance and understand green sturgeon habitat selection. These objectives build on 12 years of work to support the recovery of green sturgeon. The first objective is to continue the annual green sturgeon spawner census, while also improving our methods. This census is the main piece of information used in monitoring and assessing the Delta resident green sturgeon population. The second objective is to assess spawner site selection and habitat use which will help better understand sturgeon environmental needs so that restoration can better target those needs. The third objective is to assess the relationship between spring flow rates, temperature, and number of spawners observed, which will help managers better understand sturgeon flow cues and improve the accuracy of our spawner census.
Invasive aquatic vegetation (IAV) is a threat to aquatic ecosystems worldwide, leading to a major loss of biodiversity and extensive damages and costs to human uses of those ecosystems. The Sacramento-San Joaquin River Delta (the “Delta”) is the hub of California’s water system, supporting over 35 million water users and a $54 billion agricultural industry. The Delta reform act mandates management decisions meet both water supply needs while maintaining the ecological function of the system. The Delta is a global biodiversity hotspot, and the focal point of $750-$950 million in restoration. It has also been called one of the most invaded estuaries in the world. Over the past 15 years, submerged and floating IAV have more than doubled in extent, threatening water supply and ecosystem health of the Delta. There is mounting evidence that herbicide treatments are not effective, and that water management actions, and wetland restoration may be having huge impacts on IAV. This presents both a risk to increasing IAV, but also an opportunity to prevent and even effectively combat IAV through considered water management actions and better restoration planning, meeting the state’s co-equal goals of water security and Delta ecosystem conservation.
This project will meet the needs of multiple state agencies by advancing operational Earth observation-based monitoring program for community-level submerged aquatic vegetation (SAV) and genus-level floating aquatic vegetation (FAV) and modeling tools to enable the Delta management community to assess the effect of previous management actions on IAV and forecast the effects of future actions to inform multi-agency decision making. Specifically, this work will 1) Operationalize IAV class mapping using Sentinel-2 satellite imagery, 2) Finalize and validate species distribution Models (SDM) for SAV community and FAV at genus-level to assess the impacts of previous water actions on IAV and predict IAV distribution in future scenarios, 3) Co-design IAV-based performance metrics to inform future actions.
The proposed project fills a critical data gap in monitoring for state and federal agencies and stakeholders by implementing the first sustainable mapping effort for IAV. Monthly and seasonal estimates of SAV and FAV coverage will enable the Delta Stewardship Council to improve their performance metrics for evaluation of the Delta Plan and will help the Interagency Ecological Program assess whether management is meeting the co-equal goals for the Delta. Species distribution models will enable Department of Water Resources to evaluate how previous restoration flow actions have affected the spread and persistence of IAV and incorporate what they learn into future Structured Decision Making to better account for negative consequences of IAV when setting future restoration targets and implementing actions.
Water primrose (Ludwigia spp.) is a highly invasive, non-native floating macrophyte in the Delta. In recent years, water primrose has extended its niche into marsh habitat, causing extensive mortality of marsh macrophytes including tules and cattails. The goal of this project is to determine whether the growth strategy of water primrose, its allelopathic properties, or factors related to plant community structure are the cause of marsh loss following water primrose invasion in the Delta. Part of this study will identify and map the marshes most vulnerable to loss and quantify the spatial trajectory of marsh loss during the past 15 years. The ultimate benefit will be an improved understanding of the water primrose invasion processes in the Delta, which can be used to prioritize herbicide treatment of this highly invasive plant in marshes most vulnerable to invasion and with the highest habitat value.
Objectives: