Science activities

Reset filters

8 records


















Records

Currently, sorted by last updated
  • Title

    Reevaluating ecosystem functioning and carbon storage potential of a coastal wetland through integration of lateral and vertical carbon flux estimates

    Lead University of Washington [UW]
    Description This study aims to produce an integrated, net ecosystem carbon budget for Suisun Marsh, a representative ecosystem in the delta. This project combines diverse measurements on land and in the adjacent marine environment to produce the first directly measured, complete carbon budget for a coastal wetland habitat. This work has generated a more complete picture of the potential of wetland preservation for greenhouse gas reduction, as well as the processes that shape wetland accretion and resilience to sea-level rise. The project will provide vital information for understanding the ecosystem services, food webs, and carbon storage potential of the region’s wetlands, as well as provide new methodology that could be used by researchers around the world.
    Science topics Atmosphere, Carbon, Carbon storage, Evaporation / evapotranspiration, Non-forested vegetation, Sea level rise, Sediments, Surface water / flow, Wetlands
    Updated November 17, 2022
  • Title

    Wetland carbon sequestration and impacts of climate change

    Lead California State University [CSU]
    Description This project aims to improve understanding of atmospheric and hydrologic carbon fluxes in a restored tidal salt marsh in the South San Francisco Bay. I will use soil chambers to measure how much carbon dioxide and methane is taken in and emitted from the marsh. The project will also examine how spatial variability in marsh surface cover impact these exchanges. Shahan will use the data collected in this study to create a biogeochemical model that estimates the carbon budgets of wetlands in the Bay-Delta. A complete carbon budget will illuminate relationships between carbon fluxes and environmental variables. This information can support more informed management of wetlands, as well as allow researchers and decision makers to more effectively plan wetland restoration to be effective in managing carbon fluxes in the face of possible impacts due to climate change.
    Science topics Wetlands
    Updated April 29, 2022
  • Title

    Environmental geochemistry and tidal wetland support of pelagic food webs

    Lead University of California - Davis [UC Davis]
    Description This project aims to characterize and quantify where detrital material (decaying plant matter) originates within wetlands, the composition of that material, and how export of detrital particles occurs. This project will combine powerful characterization tools and techniques that scale from molecules to ecosystems to assess spatial and temporal trends in particle sources, species and composition. Because restoration in the Sacramento-San Joaquin Delta will fundamentally alter particle distribution and food availability for aquatic organisms, this study will inform habitat restoration efforts and the revival of native fish populations. The tools developed and adapted for this project may inform management response during extreme conditions and climate events by helping to identify areas that may act as refugia for species.
    Science topics Wetlands
    Updated April 29, 2022
  • Title

    The effect of temperature on predation of juvenile salmonids

    Lead University of California - Davis [UC Davis]
    Description This study will investigate fish swim performance in response to temperature, using salmon and two of its known predators: largemouth bass and Sacramento pikeminnow. The researcher will assess swim performance metrics and predation risk inside and outside the ideal thermal range of each species to determine if a temperature advantage predicts salmon survival in predation scenarios. This project’s results will provide a mechanistic understanding of how temperature stress may influence mortality risk of juvenile Chinook salmon through predation, which will offer a more holistic perspective on the management of this species
    Science topics Temperature
    Updated April 29, 2022
  • Title

    Using existing datasets to understand multi-scale changes in and controls on biogeochemistry in the SF Bay-Delta

    Lead University of California - Santa Cruz [UCSC]
    Description In collaboration with the United States Geological Survey, this research will explore temporal and spatial variability of carbon and nitrogen biogeochemistry across the San Francisco Bay-Delta. This science synthesis will capitalize on existing multi-year isotope datasets to gain new insights useful for understanding future changes in the system. The results generated from this two-year data synthesis project will be useful for improving our current understanding of factors driving changes in SF Bay-Delta biogeochemical processes. Results will also be informative for understanding the imminent changes coming to the from the Sacramento Regional Wastewater Treatment Plant upgrade.
    Science topics Nitrogen
    Updated November 17, 2022
  • Title

    Using high frequency flux measurements to constrain dissolved inorganic carbon in a tidal wetland carbon budget

    Lead California State University - East Bay
    Description The main purpose of this project is to determine how much carbon (C) is annually sequestered and exported laterally in a tidal wetland environment through the calculation of a net ecosystem C budget. C hydrologic export, mainly in the form of dissolved inorganic C (DIC), is poorly constrained and can pose a significant component of a wetland C budget that is often overlooked. This project intends to reduce that uncertainty by providing a better understanding of the biogeochemical drivers of C cycling and give further insight into wetland management decision-making.
    Science topics Carbon, Restoration, Tidal wetlands
    Updated November 30, 2022
  • Title

    Restoring tidal marsh foodwebs: assessing restoration effects on trophic interactions and energy flows in the San Francisco Bay-Delta

    Lead University of California - Berkeley [UC Berkeley]
    Description The objective of this research on tidal marsh food webs is to examine whether and how restoration (via breaching dikes) may translate into recovery of diverse energy pathways and trophic interactions between basal resources, primary consumers, and predators. By comparing food webs at several tidal marshes, I will answer the following questions: (1) How does food web structure vary between reference and restored tidal marshes over time (seasons and years) and across a salinity gradient? (2)What mechanisms explain variation in food web structure within and between reference and restored tidal marshes–are they related to energy flows (food quantity, quality, transfer efficiency), community composition, or both? (3) What role do non-native species play in potentially shifting food web structure–e.g., changing community membership, sequestering energy from natives? This project builds on a large breadth of research that has used stable isotopes to characterize tidal marsh food webs in the Bay-Delta and other regions.
    Science topics Food webs, Wetlands
    Updated May 8, 2024
  • Title

    From Microbes to Zooplankton, What Defines a Beneficial Wetland?

    Lead San Francisco State University, Estuary & Ocean Science Center
    Description Our study will characterize species diversity at multiple levels of biological organization in the water column of restoring wetlands in the upper San Francisco Estuary and Delta (SFE), from bacteria to fishes. In doing so, we will also describe the foodweb benefits being provided to larval fishes, including longfin smelt, through additional dietary DNA analysis. We will use the species diversity we find in the water column to identify a subset of biota that are indicative of the conditions present in wetlands in different stages of restoration (early, intermediate, and mature) and identify connections between those indicators to the foodweb resources being provided to higher trophic levels. We will study 3-4 wetlands in each of 3 stages: early (unvegetated), intermediate (partially vegetated and partially channelized), and mature (fully vegetated and channelized) wetlands.
    Science topics Crustaceans, Cyanobacteria, Estuaries, Fish, Food webs, Habitat, Habitat restoration, Insects, Invertebrates, Longfin Smelt, Other species, Other zooplankton, Pelagic fish, Phytoplankton, Predation, Restoration, Salinity, Saltwater / freshwater marshes, Tidal wetlands, Wetlands, Zooplankton
    Updated January 31, 2024