Pesticide and nutrient inputs from human activities are present in the Sacramenot-San Joaquin Bay-Delta, but the impact of these stressors together on algae is not well known. This research will examine the impacts of herbicides and nutrients on the growth and stress responses of phytoplankton and cyanobacteria present in the San Francisco Estuary. The algae in the delta are diverse with critical ecological effects, ranging from toxin-producing cyanobacteria that form hazardous algal blooms to benthic diatoms and green algae that make up the bulk of the aquatic food web. Contaminants and herbicides can cause changes in algae cellular health which may impact population growth. Understanding algal sub-lethal stress responses will improve our understanding of stressors on the bay-delta food web and bloom formation.
The Environmental Monitoring Program (EMP) has conducted the Zooplankton Study since 1972 to better assess trends in the lower trophic food web in the San Francisco Bay-Delta estuary. The study also detects and monitors zooplankton recently introduced to the estuary and determines their effects on native species. Under the auspices of the Interagency Ecological Program for the San Francisco Estuary and mandated by Water Right Decision D-1641, the EMP Zooplankton Study is part of the Environmental Monitoring Program and is conducted by the California Department of Fish and Game (CDFW), California Department of Water Resources (DWR), and the United States Bureau of Reclamation (USBR).
The Delta is a critical area for sustainable water management, facing significant challenges due to climate change. One of these challenges is in understanding and mitigating maladaptation – climate-aligned actions that may increase vulnerabilities or reduce adaptive capacity. Given the uncertainties surrounding climate change, management actions that seek to achieve high-level goals of climate change adaptation while accounting for maladaptation must be robust, ensuring adequate, multicriteria performance across all climate futures. This work responds to two gaps: (1) the absence of tools for assessing the performance of management actions in the Delta under hydroclimatic uncertainty and (2) a lack of research that explores how stakeholders can account for maladaptation in water governance. Among Delta stakeholders and researchers alike, the discourse and science surrounding ecological flow guidelines, the social complexities of water governance, and the use of integrated climate models to inform robust and adaptive decisions is active and rapidly advancing. This positions the Delta not only as an ideal case study for the academic study of maladaptation, but also as one that is of immediate relevance to stakeholders, responding to several Delta Management Needs (Science Actions 3B, 6E, and 1A) as they concern open science and the exploration of the Delta as a socioecological system and the facilitation of decision-making under climate change and its associated uncertainties.
Due to pervasive anthropogenic influences (e.g., habitat alteration, climate change), current rates of biodiversity loss in the Sacramento-San Joaquin Delta are unprecedented. Application of appropriate management regimes and mitigation measures thus require effective biological monitoring to adaptively manage systems. Non-invasive environmental DNA (eDNA)-based tools for endangered species monitoring have gained attention as a complementary approach to traditional sampling because of their increased sensitivity and accurate quantification. However, the unique characteristics of environmental RNA (eRNA) make it a novel tool, allowing us to gain additional information that is not possible to obtain with eDNA. Using novel eRNA tools to improve detection and quantify health status of Smelt has only been theorized and remains to be empirically tested. Both Delta and Longfin Smelt species were historically ubiquitous in the Sacramento-San Joaquin Delta, but have declined precipitously over the past several decades. One source of mortality is entrainment into the south Delta water export pumps. Although the entrainment of juvenile and adult smelt has been regularly monitored at fish salvage facilities, entrainment of larval smelt (< 20 mm) is not quantified, thus remains largely unknown. Moreover, given the current climate change effect (e.g., increased heat stress), an understanding of how these endangered species will respond to acute stress response in the wild is lacking.
The San Francisco Estuary (SFE) supports the southernmost reproductive population of longfin smelt (LFS) along the Pacific Coast. Long term monitoring studies have observed a precipitous decline of LFS in the SFE over the past several decades, and the San Francisco Bay-Delta Distinct Population Segment was listed as endangered under the Endangered Species Act in July of 2024. There are important gaps in our understanding of LFS ecology and movement within the highly urbanized SFE, posing challenges to the development of effective recovery strategies. More complete information about the movement and migration of LFS in the wild can lead to improved life-cycle modeling and provide insight into the species’ relationship with temperature, salinity and other habitat features of the SFE. An effective tool to learn about fish migration and movement is through a tracking method known as acoustic telemetry. Until recently this practice has been impossible on small fish such as LFS due to their body size relative to existing acoustic transmitters, or ‘tags’. With recent advances in telemetry technology, we now have an opportunity to implant newly miniaturized acoustic transmitters into adult LFS. However, before the results of telemetry studies utilizing these newly developed transmitters can be used to make inferences about wild populations, it is imperative to determine whether the tagged individuals are surviving and behaving in the same way as their un-tagged counterparts. The study aims to establish post-tagging survival and transmitter retention rates of wild and captive-reared LFS surgically implanted with newly miniaturizes acoustic transmitters, as well as the sublethal effects of transmitter implantation on LFS swimming performance. The results of this study will directly inform the implementation of acoustic telemetry on LFS, aiding in the conservation and recovery of an imperiled native species.