This project aims to quantify the impacts of common reed (Phragmites) invasion on community structure and ecosystem function during early stages of tidal restoration in wetlands. The study will focus on the Tule Red Tidal Restoration site in Suisun Marsh. The research aims to produce a conceptual model that will describe habitat structure, invertebrate communities, and predator use of wetlands affected by Phragmites invasion. The conceptual model resulting from this study will guide future predictions of wetland response to invasion and to develop mitigation strategies. Data collected will also support food web models and the understanding of invasive plants as stressors, as well as foster translational science to the management community.
The California Recreational Fisheries Survey (CRFS) mission is to collect fishery-dependent data on California's marine recreational fisheries, and to accurately estimate catch and effort in a time frame and on a scale that meets management needs. CRFS collects the data necessary to estimate catch and effort for California's diverse recreational finfish fisheries which range from the California-Mexico border to the California-Oregon border extending over 1,100 miles of coast and is surveyed at over 400 sampling sites. Annually, CRFS conducts over 7,000 sampling assignments and contacts over 68,000 fishing parties. High sampling rates produce confidence in estimates with a 20 percent sample rate of private boat anglers during salmon or groundfish seasons. CRFS collects the data to produce the estimates for all sport-caught finfish.
The overarching AIS goal is that "Risks of aquatic invasive species invasions are substantially reduced, and their economic, ecological, and human health impacts are minimized. This goal is addressed through a series of performance and workload measures. The AIS Program provides funding for Aquatic Invasive Species Coordinators for each Region within the Service and their respective aquatic nuisance species activities. These coordinators work closely with the public and private sector to develop and implement invasive species projects. One of the primary initiatives of the program is the prevention of invasive species via boats through the "100th Meridian Initiative" (overseen by individual AIS regional coordinators). This initiative aims to prevent the spread of aquatic invasive species by boats personal watercraft and other pathways. Through boat inspections and boaters assessments along the 100th meridian, partners can learn how to prevent the spread of zebra mussels and other AIS via transport of boats and personal watercraft.
The Environmental Monitoring Program (EMP) began in 1975 to conduct baseline and compliance monitoring of water quality, phytoplankton, zooplankton, and benthic invertebrates in the San Francisco Bay-Delta estuary. This monitoring program was designed to track the impact of water diversions to the State Water Project (SWP) and Central Valley Project (CVP) on the Bay-Delta. In the decades since, EMP scientists have monitored these constituents at fixed and floating stations throughout the estuary and ensured compliance with state and federal mandates such as Water Right Decision 1641 (D-1641). In the years and decades since its inception, EMP has become one of the cornerstones for scientists' and managers' understanding of the pace and pattern of change in this critical ecosystem. By sampling water quality and biological communities concurrently, EMP has created a dataset that is uniquely useful in better understanding causal connections between physical, biological, and biogeochemical processes.
Invasive aquatic vegetation (IAV) is widespread in the Sacramento-San Joaquin Delta (Delta) and its change in coverage has been mapped at the species level using spectroscopy data collected once a year, from 2004 to 2008 and from 2014 to 2019. There was no funding to conduct a similar mapping campaign in 2020. This work aims to collect and analyze imagery in summer of 2020 to fulfill two main objectives. First is to inform the monitoring framework for aquatic vegetation put forth for the Interagency Ecological Program (IEP). Comparing spring and fall imagery of 2019 and the summer imagery of 2020, the project will evaluate which time period is ideal for optimal mapping of aquatic vegetation considering the logistical challenges of airborne imagery acquisition and the phenology of the species being mapped. The project will also contrast the pros and cons of the 3 proposed scenarios in the IEP monitoring framework: 1) two hyperspectral acquisitions a year (2019; “best case” scenario), 2) one acquisition a year (2020, “moderate” scenario) and 3) satellite data based monitoring (the Sentinel-2 study, “bare bones” scenario). The second objective of the project is to determine if the new treatment framework (new herbicide formulations and application schedules) is effective in controlling the old (Brazilian waterweed, water hyacinth) and newly added target weed species (water primrose, alligator weed) in the Delta ecosystem.
Invasive aquatic vegetation (IAV) is a threat to aquatic ecosystems worldwide, leading to a major loss of biodiversity and extensive damages and costs to human uses of those ecosystems. The Sacramento-San Joaquin River Delta (the “Delta”) is the hub of California’s water system, supporting over 35 million water users and a $54 billion agricultural industry. The Delta reform act mandates management decisions meet both water supply needs while maintaining the ecological function of the system. The Delta is a global biodiversity hotspot, and the focal point of $750-$950 million in restoration. It has also been called one of the most invaded estuaries in the world. Over the past 15 years, submerged and floating IAV have more than doubled in extent, threatening water supply and ecosystem health of the Delta. There is mounting evidence that herbicide treatments are not effective, and that water management actions, and wetland restoration may be having huge impacts on IAV. This presents both a risk to increasing IAV, but also an opportunity to prevent and even effectively combat IAV through considered water management actions and better restoration planning, meeting the state’s co-equal goals of water security and Delta ecosystem conservation.
This project will meet the needs of multiple state agencies by advancing operational Earth observation-based monitoring program for community-level submerged aquatic vegetation (SAV) and genus-level floating aquatic vegetation (FAV) and modeling tools to enable the Delta management community to assess the effect of previous management actions on IAV and forecast the effects of future actions to inform multi-agency decision making. Specifically, this work will 1) Operationalize IAV class mapping using Sentinel-2 satellite imagery, 2) Finalize and validate species distribution Models (SDM) for SAV community and FAV at genus-level to assess the impacts of previous water actions on IAV and predict IAV distribution in future scenarios, 3) Co-design IAV-based performance metrics to inform future actions.
The proposed project fills a critical data gap in monitoring for state and federal agencies and stakeholders by implementing the first sustainable mapping effort for IAV. Monthly and seasonal estimates of SAV and FAV coverage will enable the Delta Stewardship Council to improve their performance metrics for evaluation of the Delta Plan and will help the Interagency Ecological Program assess whether management is meeting the co-equal goals for the Delta. Species distribution models will enable Department of Water Resources to evaluate how previous restoration flow actions have affected the spread and persistence of IAV and incorporate what they learn into future Structured Decision Making to better account for negative consequences of IAV when setting future restoration targets and implementing actions.
Water primrose (Ludwigia spp.) is a highly invasive, non-native floating macrophyte in the Delta. In recent years, water primrose has extended its niche into marsh habitat, causing extensive mortality of marsh macrophytes including tules and cattails. The goal of this project is to determine whether the growth strategy of water primrose, its allelopathic properties, or factors related to plant community structure are the cause of marsh loss following water primrose invasion in the Delta. Part of this study will identify and map the marshes most vulnerable to loss and quantify the spatial trajectory of marsh loss during the past 15 years. The ultimate benefit will be an improved understanding of the water primrose invasion processes in the Delta, which can be used to prioritize herbicide treatment of this highly invasive plant in marshes most vulnerable to invasion and with the highest habitat value.
Objectives: