Science activities

Reset filters

28 records


















Records

Currently, sorted by last updated
  • Title

    Soil type as a driver of agricultural climate change response in the Sacramento-San Joaquin Delta

    Lead University of California - Berkeley [UC Berkeley]
    Description This research project aims to increase understanding of how iron-rich peatland soils cycle carbon, nitrogen, and phosphorus in the delta and establish how carbon and nitrogen biogeochemistry and greenhouse gas emissions vary with management practices and crop type. It also explores how a drier future climate will influence biogeochemistry and greenhouse gas emissions in iron-rich soils and how to best adapt land management practices. The goal of this research is to identify agricultural practices that can generate a portfolio of climate change adaptation and greenhouse gas mitigation strategies for delta farmers. The greenhouse gas data collected as part of this research also helped to generate increasingly accurate emission offset credits for potential wetland restoration projects in California’s Cap-and-Trade program.
    Science topics Agriculture, Carbon, Nitrogen, Phosphorous, Soil
    Updated November 17, 2022
  • Title

    Habitat, hatcheries, and nonnative predators interact to affect juvenile salmon behavior and survival

    Lead University of California - Santa Cruz [UCSC]
    Description Chinook salmon are an iconic part of California’s environment and heritage, and important both economically and culturally. In the Sacramento River, the winter-run Chinook population is endangered, and there is strong interest in restoring these populations. To do so, resource managers need to better understand the pressures on wild populations. Predation by nonnative predators affects survival of young salmon but may also affect the behavior of salmon. Changes to salmon behavior also have costs but are not currently considered in management. Managers need information on how predators affect juvenile salmon behavior, how they might vary under different conditions, and how they scale up to affect populations.
    Science topics Chinook Salmon, Fishing
    Updated November 17, 2022
  • Title

    Investigation of the resilience of the salt marsh harvest mouse and best management practices in response to climate change

    Lead University of California - Davis [UC Davis]
    Description This study aimed to investigate the response of the salt marsh harvest mouse to several threats of climate change, including extreme annual climate cycles and sea level rise. The study was based on ongoing population surveys in the Suisun Marsh, and a study of upland/elevated refuge throughout the species’ range, over the two-year study. It also involved the piloting of advance remote detection technology (camera traps, audio detectors, and digital mouse traps) and effective, affordable high tide refuge (islands and trellises). Finally, ongoing trapping efforts at established survey sites is providing data for ongoing analysis on the effects of weather patterns and space needs of populations.
    Science topics Climate change, Salt marsh harvest mouse, Saltwater / freshwater marshes
    Updated November 17, 2022
  • Title

    Effects of copper exposure on the olfactory response of Delta smelt [Hypomesus transpacificus]: Investigating linkages between morphological and behavioral anti-predator response

    Lead University of California - Davis [UC Davis]
    Description This study aimed to address the question of how water-borne copper can affect the ability of delta smelt to detect predator related odorants and conduct essential behaviors. To do this, the project included a thorough morphological and cytological study of the delta smelt olfactory organ, which had previously not been well-studied. The researchers also characterized the olfactory mediated antipredatory response to alarm cues and assessed the effects of copper exposure on the anti-predator behavior and morphology of the olfactory rosette of delta smelt.
    Science topics Copper, Delta Smelt, Toxicity
    Updated November 17, 2022
  • Title

    Effect of temperature and salinity on physiological performance and growth of longfin smelt: Developing a captive culture for a threatened species in the Sacramento- San Joaquin Delta

    Lead University of California - Berkeley [UC Berkeley]
    Description This research project aimed to improve understanding of the physiological requirements for survival and reproduction across the entire life history of longfin smelt (from egg to larvae to juvenile to reproducing adult). The overall goals of this project were to assist in developing a captive longfin smelt culture and assess longfin smelt responses to multiple stressors across all life stages, which has been difficult because of extremely low (<10%) larval survival of these fish.
    Science topics Delta Smelt, Longfin Smelt, Salinity, Temperature
    Updated November 17, 2022
  • Title

    Reevaluating ecosystem functioning and carbon storage potential of a coastal wetland through integration of lateral and vertical carbon flux estimates

    Lead University of Washington [UW]
    Description This study aims to produce an integrated, net ecosystem carbon budget for Suisun Marsh, a representative ecosystem in the delta. This project combines diverse measurements on land and in the adjacent marine environment to produce the first directly measured, complete carbon budget for a coastal wetland habitat. This work has generated a more complete picture of the potential of wetland preservation for greenhouse gas reduction, as well as the processes that shape wetland accretion and resilience to sea-level rise. The project will provide vital information for understanding the ecosystem services, food webs, and carbon storage potential of the region’s wetlands, as well as provide new methodology that could be used by researchers around the world.
    Science topics Atmosphere, Carbon, Carbon storage, Evaporation / evapotranspiration, Non-forested vegetation, Sea level rise, Sediments, Surface water / flow, Wetlands
    Updated November 17, 2022
  • Title

    Do light, nutrient, and salinity interactions drive the “bad Suisun” phenomenon? A physiological assessment of biological hotspots in the San Francisco Bay-Delta

    Lead University of California - Santa Cruz [UCSC]
    Description This project assessed the physiological basis for reduced phytoplankton growth in Suisun Bay, prior to the major upgrade at the Sacramento Regional Wastewater Treatment Plant (SRWTP), which is responsible for 90% of the nitrogen released into the bay. The work involved analyzing almost three decades of historical eld data from the bay-delta and using it to build a model to evaluate environmental drivers of phytoplankton biomass. Discoveries from the eld data were then tested through laboratory culturing experiments. By illuminating the interacting e ects of bottom- up drivers (light, nutrients, salinity) on phytoplankton, this research helps provide a fundamental understanding of this complex ecosystem.
    Science topics Ammonia, Flushing rates, Light, Open water, Pelagic fish, Phytoplankton, Salinity, Wastewater discharge, Water temperature
    Updated November 17, 2022
  • Title

    Simulating methylmercury production and transport at the sediment-water interface to improve the water quality in the Delta

    Lead University of California - Merced [UC Merced]
    Description The aim of this project was to improve basic knowledge of mercury cycling and aid management of net methylmercury production in the delta by developing a kinetic-thermodynamic reaction model that describes and quantifies mercury cycling in delta sediments. The model was used to assess uncertainties and estimate methylation and demethylation rates — the processes by which methylmercury is produced and breaks down. In addition, the project examined coupling of mercury cycling with cycling of iron, sulfur, and manganese.
    Science topics Bioaccumulation, Chemistry, Hg and methyl mercury
    Updated November 17, 2022
  • Title

    Defining habitat quality for young-of-year longfin smelt: Historical otolith-based reconstructions of growth and salinity history in relation to geography, climate, and outflow

    Lead University of California - Davis [UC Davis]
    Description This project aimed to use experiments to develop new otolith-based tools for longfin smelt and to then apply them to an extensive collection of archived wild Longfin Smelt specimens, to build a better understanding of longfin smelt life history, habitat use, and the interactions between stressors and abundance. In addition, the project aims to improve the understanding of how longfin smelt populations are affected by freshwater outflow. The project also aims to provide tools to support and evaluate habitat restoration, and facilitate development of a plan to recover this threatened species.
    Science topics Longfin Smelt, Outflow, Salinity
    Updated November 17, 2022
  • Title

    Consequences of Phragmites invasion for community function in Suisun Marsh

    Lead University of California - Davis [UC Davis]
    Description This project aims to quantify the impacts of common reed (Phragmites) invasion on community structure and ecosystem function during early stages of tidal restoration in wetlands. The study will focus on the Tule Red Tidal Restoration site in Suisun Marsh. The research aims to produce a conceptual model that will describe habitat structure, invertebrate communities, and predator use of wetlands affected by Phragmites invasion. The conceptual model resulting from this study will guide future predictions of wetland response to invasion and to develop mitigation strategies. Data collected will also support food web models and the understanding of invasive plants as stressors, as well as foster translational science to the management community.
    Science topics Invasive / non native species
    Updated April 29, 2022
  • Title

    Risk of fish predation within and across tidal wetland complexes

    Lead University of California - Davis [UC Davis]
    Description This study focuses on understanding how restored tidal wetlands with different physical configurations function as refuge and rearing habitat for fishes, including native and imperiled species such as delta smelt and juvenile Chinook salmon. This research will assess the spatial distribution of predation risk as it varies within and across tidal wetlands. The proposed research will generate a statistical model that helps predict predation outcomes from various restored tidal wetland designs and channel configurations. This will be a powerful tool for managers to forecast how proposed habitat restoration or water management actions may impact native fish populations.
    Science topics Tidal wetlands
    Updated April 29, 2022
  • Title

    Phytoplankton and cyanobacteria growth and response to stressors

    Lead University of California - Davis [UC Davis]
    Description Pesticide and nutrient inputs from human activities are present in the Sacramenot-San Joaquin Bay-Delta, but the impact of these stressors together on algae is not well known. This research will examine the impacts of herbicides and nutrients on the growth and stress responses of phytoplankton and cyanobacteria present in the San Francisco Estuary. The algae in the delta are diverse with critical ecological effects, ranging from toxin-producing cyanobacteria that form hazardous algal blooms to benthic diatoms and green algae that make up the bulk of the aquatic food web. Contaminants and herbicides can cause changes in algae cellular health which may impact population growth. Understanding algal sub-lethal stress responses will improve our understanding of stressors on the bay-delta food web and bloom formation.
    Science topics Phytoplankton, Cyanobacteria
    Updated April 29, 2022
  • Title

    Wetland carbon sequestration and impacts of climate change

    Lead California State University [CSU]
    Description This project aims to improve understanding of atmospheric and hydrologic carbon fluxes in a restored tidal salt marsh in the South San Francisco Bay. I will use soil chambers to measure how much carbon dioxide and methane is taken in and emitted from the marsh. The project will also examine how spatial variability in marsh surface cover impact these exchanges. Shahan will use the data collected in this study to create a biogeochemical model that estimates the carbon budgets of wetlands in the Bay-Delta. A complete carbon budget will illuminate relationships between carbon fluxes and environmental variables. This information can support more informed management of wetlands, as well as allow researchers and decision makers to more effectively plan wetland restoration to be effective in managing carbon fluxes in the face of possible impacts due to climate change.
    Science topics Wetlands
    Updated April 29, 2022
  • Title

    Estuarine fish community responses to climate, flow, and habitat

    Lead University of California - Berkeley [UC Berkeley]
    Description The goal of this research is to better understand how climate change will affect fishes with different life histories and habitat associations across the San Francisco Estuary. Existing datasets will be incorporated in synthetic analyses and cutting-edge statistical models to identify fish community responses to climate, flows, and habitats along the estuarine salinity gradient. This synthesis-science project will use rich long-term datasets that have been collected by Bay-Delta researchers for decades that will then be analyzed in a reproducible and open science framework. It will also support efforts by the Interagency Ecological Program’s Climate Change Project Work Team.
    Science topics Estuaries
    Updated April 29, 2022
  • Title

    Environmental geochemistry and tidal wetland support of pelagic food webs

    Lead University of California - Davis [UC Davis]
    Description This project aims to characterize and quantify where detrital material (decaying plant matter) originates within wetlands, the composition of that material, and how export of detrital particles occurs. This project will combine powerful characterization tools and techniques that scale from molecules to ecosystems to assess spatial and temporal trends in particle sources, species and composition. Because restoration in the Sacramento-San Joaquin Delta will fundamentally alter particle distribution and food availability for aquatic organisms, this study will inform habitat restoration efforts and the revival of native fish populations. The tools developed and adapted for this project may inform management response during extreme conditions and climate events by helping to identify areas that may act as refugia for species.
    Science topics Wetlands
    Updated April 29, 2022
  • Title

    The effect of temperature on predation of juvenile salmonids

    Lead University of California - Davis [UC Davis]
    Description This study will investigate fish swim performance in response to temperature, using salmon and two of its known predators: largemouth bass and Sacramento pikeminnow. The researcher will assess swim performance metrics and predation risk inside and outside the ideal thermal range of each species to determine if a temperature advantage predicts salmon survival in predation scenarios. This project’s results will provide a mechanistic understanding of how temperature stress may influence mortality risk of juvenile Chinook salmon through predation, which will offer a more holistic perspective on the management of this species
    Science topics Temperature
    Updated April 29, 2022
  • Title

    Pesticide risk analyses and management actions, chemical fate and transport

    Lead University of California - Santa Barbara [UCSB]
    Description This project work will model the risk of pesticide pollution in 225 sub-catchments of the Sacramento-San Joaquin Bay-Delta. The model will account for water management practices, land use, pesticide use rates, and cumulative pesticide stress. Additionally, this work will produce a web-based tool to simulate current and future risks based on the ranking of primary sources of pesticide contribution. This work will provide a framework to predict risk from chemical stressors. Specific objectives are: (1) enhanced pro-active chemical risk assessment, (2) creation of a tool which enables science-based chemical use decisions, (3) improved risk screening for vulnerable areas, and (4) identification of adverse effects of current and future chemical use strategies.
    Science topics Herbicides
    Updated April 29, 2022
  • Title

    Using existing datasets to understand multi-scale changes in and controls on biogeochemistry in the SF Bay-Delta

    Lead University of California - Santa Cruz [UCSC]
    Description In collaboration with the United States Geological Survey, this research will explore temporal and spatial variability of carbon and nitrogen biogeochemistry across the San Francisco Bay-Delta. This science synthesis will capitalize on existing multi-year isotope datasets to gain new insights useful for understanding future changes in the system. The results generated from this two-year data synthesis project will be useful for improving our current understanding of factors driving changes in SF Bay-Delta biogeochemical processes. Results will also be informative for understanding the imminent changes coming to the from the Sacramento Regional Wastewater Treatment Plant upgrade.
    Science topics Nitrogen
    Updated November 17, 2022
  • Title

    Nitrogen cycling and ecosystem metabolism before and after regulatory action

    Lead Stanford University
    Description This project focuses on nitrogen and carbon cycling within the Bay-Delta, both before and after planned 2021 upgrades to the Sacramento Regional Wastewater Treatment Plant (SRWTP). We will measure in situ benthic nitrate (NO3- ) and oxygen (O2) fluxes using a new non-invasive technique, which provides high frequency continuous data over a much larger sediment surface area than traditional methods. The SRTWP currently represents one of the largest point sources of nitrogen to the Bay-Delta, with the upgrades projected to cut nitrogen outputs from the plant by ~65%. This project will help assess the efficacy of this major management action and our results will add to biogeochemical models for the Bay-Delta.
    Science topics Nitrogen / ammonia
    Updated April 29, 2022
  • Title

    Functional diversity and predator dynamics along the Sacramento and San Joaquin River Delta

    Lead University of California - Santa Cruz [UCSC]
    Description This project's objectives are to: 1) determine snake species diversity and relative abundance, 2) establish resources available and examine the functional role that snakes play along field sites within the Sacramento-San Joaquin River Delta, 3) document predator-prey interactions, and 4) assess the thermal physiology of snakes and the thermal profile of microhabitats along the Sacramento-San Joaquin Delta.
    Science topics Habitat, Invasive / non native species
    Updated May 8, 2024
  • Title

    Identification of environmental conditions driving cyanobacterial multi-species blooms and their toxicity using genome resolved metagenomics

    Lead University of California - Berkeley [UC Berkeley]
    Description In recent years the Sacramento-San Joaquin Delta has seen an increase in toxigenic cyanobacterial diversity and abundance during harmful cyanobacterial bloom events (cyanoHABs). This increased cyanobacterial diversity parallels an increase in the number of detected toxins during cyanoHABs outside of the typical microcystins that have been previously identified. Currently there are critical knowledge gaps around the full toxigenic potential of rising diversity of cyanobacterial species, and how the total microbial community of cyanoHABs interacts within itself and with external abiotic factors in ways that may promote the expansion of new and diverse cyanoHABs. The goal of this study is to use genome-resolved metagenomics to study the genetic diversity and metabolic and toxigenic potential of cyanoHABs to i) identify cyanobacterial taxa composition and their potential for toxins biosynthesis ii) characterize species succession dynamics and metabolic processes of the full microbial community during cyanobacterial bloom phases, iii) correlate environmental factors and toxin titers with biological components of diverse bloom phases to explain the development of cyanobacterial multi-species dominated bloom.
    Science topics Cyanobacteria, Harmful algal blooms HAB
    Updated May 8, 2024
  • Title

    Fish out of breath: Assessing, developing, and validating physiological bioindicators of hypoxia across the Delta

    Lead University of California - San Diego [UCSD]
    Description This proposal seeks to generate two management tools to optimize ongoing conservation efforts (e.g. wetland restoration, fish supplementation) by accomplishing the following 4 objectives: Objective 1) use controlled laboratory experiments to identify temperature-dependent hypoxia tolerance data (Pcrit) for ChinookSalmon smolts and juvenile Delta Smelt. Objective 2) compile existing temperature and DO monitoring data across the SFE. Objective 3) generate metabolic indices using the newly-generated physiological data (Obj. 1) and existing environmentalinformation (Obj. 2) to examine spatial and temporal patterns in metabolic stress for each species. Objective 4) explore and develop an otolith-based bioindicator to identify past hypoxia exposure.
    Science topics Chinook Salmon, Delta Smelt, Dissolved oxygen, Temperature
    Updated May 8, 2024
  • Title

    Using high frequency flux measurements to constrain dissolved inorganic carbon in a tidal wetland carbon budget

    Lead California State University - East Bay
    Description The main purpose of this project is to determine how much carbon (C) is annually sequestered and exported laterally in a tidal wetland environment through the calculation of a net ecosystem C budget. C hydrologic export, mainly in the form of dissolved inorganic C (DIC), is poorly constrained and can pose a significant component of a wetland C budget that is often overlooked. This project intends to reduce that uncertainty by providing a better understanding of the biogeochemical drivers of C cycling and give further insight into wetland management decision-making.
    Science topics Carbon, Restoration, Tidal wetlands
    Updated November 30, 2022
  • Title

    Restoring tidal marsh foodwebs: assessing restoration effects on trophic interactions and energy flows in the San Francisco Bay-Delta

    Lead University of California - Berkeley [UC Berkeley]
    Description The objective of this research on tidal marsh food webs is to examine whether and how restoration (via breaching dikes) may translate into recovery of diverse energy pathways and trophic interactions between basal resources, primary consumers, and predators. By comparing food webs at several tidal marshes, I will answer the following questions: (1) How does food web structure vary between reference and restored tidal marshes over time (seasons and years) and across a salinity gradient? (2)What mechanisms explain variation in food web structure within and between reference and restored tidal marshes–are they related to energy flows (food quantity, quality, transfer efficiency), community composition, or both? (3) What role do non-native species play in potentially shifting food web structure–e.g., changing community membership, sequestering energy from natives? This project builds on a large breadth of research that has used stable isotopes to characterize tidal marsh food webs in the Bay-Delta and other regions.
    Science topics Food webs, Wetlands
    Updated May 8, 2024
  • Title

    Harmonizing pesticide risk management of the Bay Delta watershed

    Lead University of California - Santa Barbara [UCSB]
    Description Objective One: Employ high-resolution irrigation data to predict pesticide risks in the Bay Delta Watershed (BDW). This effort will enable more accurate prediction of health hazards given irrigation is a key driver of pesticide transport to surface and ground water. The effects of irrigation methods to pesticide transport vary significantly in their contribution of pesticides to runoff/leachate due to effects on pesticide build-up/wash-off and soil moisture conditions antecedent to precipitation. Objective Two: Provide harmonized species indicators of pesticide toxic burden releases for the Bay Delta which consider diverse resident taxa and human health. California benefits from a plethora of academic researchers, environmental advocacy groups, municipalities, and government groups working to protect the environment. Due to the complexities of this work, efforts often focus on a particular taxa or environmental compartment. This introduces a significant challenge in evaluating the pros and cons of any particular pesticide use. Currently, 79 of the 208 watersheds near the Delta which receive agricultural pesticide applications have increasing pesticide toxic burdens to aquatic taxa. Enabling evaluation of chemical alternatives which reduce toxic burdens across taxa is important to restoring ecosystem health. Objective Three. Quantify the variability of pesticide degradation and the significance to pesticide risk in the BDW. The degree to which pesticides remain in the soils of the BDW increases their probability for accumulation, transport, and nontarget affects. Degradation is highly variable in soils; an investigation of 10 pesticides in 8 soil types under equivalent conditions demonstrated a mean difference of 540% in the minimum and maximum rate of degradation for pesticides evaluated. Yet, researchers and regulators often only employ the median observed rate of degradation which may under predict risks to waterbodies of the BDW.
    Science topics Pesticides
    Updated November 30, 2022
  • Title

    Mapping the adaptation governance network of the Delta

    Lead University of California - Davis [UC Davis]
    Description Climate adaptation in the San Joaquin-Sacramento Delta involves multiple agencies, communities, venues, projects, and issues. Understanding how learning and cooperation occurs within this complex governance network is critical for carrying out effective and equitable adaptation. The main objective of this project is to understand how and why human communities (e.g., community organizations, local governments, and Tribal entities) are engaged in this governance system and the drivers of learning and cooperation for climate adaptation. To accomplish this, we will map the network of current adaptation actors, institutions, and actions, assess their engagement in the governance system, and conduct in-depth case studies on existing adaptation projects in the San Joaquin – Sacramento Delta.
    Science topics Climate change
    Updated May 8, 2024
  • Title

    Examining the relationship between Longfin Smelt and flow in the San Francisco Bay Delta

    Lead University of California - Berkeley [UC Berkeley]
    Description The overarching goal of this study is to investigate the time-varying effects of flow variation and food availability on longfin smelt population dynamics, via advanced modeling of a diverse set of environmental and ecological monitoring time series. Specifically, this project will:(1) Assess how key environmental drivers (flow, salinity, temperature) have changed over the past 5 decades (1967 to present) across the San Francisco Estuary (SFE); (2) Examine how longfin smelt population dynamics have changed over that time period, and whether/when breakpoints in abundance and trends exist (e.g., periods of 'decline' vs' stability'); (3) Quantify the effects of environmental on driving observed fluctuations in longfin smelt dynamics; (4) Determine whether/how environment-smelt relationships have changed in magnitude or sign over time; and if they changed, whether such changes have been spatially consistent across the SFE. These goals will inform ongoing conservation efforts of longfin smelt by determining the combinations of flow, habitat, and prey availability conditions that lead to stable population dynamics for the species.
    Science topics Fish, Flows, Longfin Smelt, Zooplankton
    Updated May 8, 2024
  • Title

    Perceptions of risk and management of the Delta levee system

    Lead University of California - Santa Cruz [UCSC]
    Description This study of the perceptions of flood risk and management of the levee system in a deltaic region of California illuminates the social, cultural, and psychological complexities of risk assessment. In order to better understand risk tolerance, we included stakeholders from the following groups: agriculture, engineering, boating and recreation industry, local reclamation districts, conservation organizations, water exporters, county government, and state agencies. Methods employed are qualitative and quantitative and include interviews and media analysis. For decades the Sacramento-San Joaquin Delta has been ripe with political controversies stemming from conflicting interests for its natural resources. The results of this study reveal distinct views on the sustainability of the Delta’s levees, the resilience of local communities, and who is accountable for present conditions. The findings of this study also elucidate nuances in the conversations on the viability of mitigation and adaptation as conditions in the Delta change. We conducted this study in two parts. First, we used the Q methodology and found five distinct views that shape stakeholders’ perceptions of risk of flooding from levee failure: fatalistic, skeptical, free market, bio-centric, and human ingenuity. Second, we collected over 500 newspaper articles from 1986 to 2017 to analyze the framing of issue of flooding in the Delta. As opposed to our study with diverse stakeholders, our media analysis show that the issue of flood risk has been framed in the media mostly along the binary lines of unpreventable catastrophe and control through emergency management.
    Science topics Levees
    Updated January 23, 2024