Science activities

Reset filters

11 records


















Records

Currently, sorted by last updated
Download
  • Title

    Delta Wetland Resilience and Blue Carbon

    Lead San Francisco Estuary Institute [SFEI]
    Description This project estimates carbon storage for the past, present and future Delta, as well as GHG fluxes and elevation change based on chosen restoration and rice farming scenarios in the future Delta using the Delta Landscape Scenario Planning Tool. The project also investigates how well the current organic matter parameterizations and inorganic sediment parameterization in the Marsh Equilibrium Model (MEM) represent Delta marsh accretion processes. Knowledge of marsh accretion and migration will be used to develop a spatial conceptual model of marsh resilience in the Delta.
    Science topics Carbon, Greenhouse gas GHG, Resilience, Sea level rise, Subsidence, Wetlands
    Updated June 14, 2024
  • Title

    Delta Aquatic Resource Inventory

    Lead Sacramento-San Joaquin Delta Conservancy
    Description The Delta Aquatic Resources Inventory of surface waters, wetlands and other aquatic resources in the Sacramento-San Joaquin Delta (Delta) will provide a standard regional approach to wetland classification and mapping to support wetland restoration planning, tracking, and reporting. It will faciliate implementation of the California Wetland and Riparian Areas Monitoring Plan (WRAMP) in the Delta.
    Science topics Wetland mapping
    Updated November 17, 2022
  • Title

    Delta Landscapes Project

    Lead San Francisco Estuary Institute [SFEI]
    Description The Delta Landscapes Project has developed a body of work to inform landscape-scale restoration of the Sacramento-San Joaquin Delta ecosystem. The project is built on knowledge, first published in 2012’s Delta Historical Ecology Investigation, of how the Delta ecosystem functioned in the early 1800s (prior to the California Gold Rush and subsequent landscape-level changes).
    Science topics Landscape metrics, Restoration planning, Marsh wildlife, Riparian wildlife, Terrestrial wildlife, Fish
    Updated April 29, 2022
  • Title

    Delta Landscape Scenario Planning Tool

    Lead San Francisco Estuary Institute [SFEI]
    Description The Delta Landscapes Scenario Planning Tool is a set of resources to assist users with developing, analyzing, and evaluating different land use scenarios in the Delta. The tool is designed to inform ongoing and future restoration planning efforts by assessing how proposed projects will affect a suite of landscape metrics relating to desired ecosystem functions.
    Science topics Fish, Landscape metrics, Marsh wildlife, Restoration planning, Riparian wildlife, Sea level rise, Terrestrial wildlife
    Updated November 17, 2022
  • Title

    Landscape Visioning Pilot Application for Staten Island

    Lead San Francisco Estuary Institute [SFEI]
    Description A demonstration project to define possible future land use scenarios for Staten island (“visions”) and leverage existing tools/resources to analyze and compare these scenarios.
    Science topics Habitat restoration, Carbon storage
    Updated April 29, 2022
  • Title

    Delta Salmon Rearing Project

    Lead San Francisco Estuary Institute [SFEI]
    Description This project summarizes existing research and knowledge around suitable rearing habitat for Chinook salmon in the Sacramento-San Joaquin Delta;identifies areas of suitability for rearing salmon using a combined suitability analysis of four mapped habitat parameters;and provides recommendations for types of restoration needed to improve or restore rearing habitat, as well as to identify where in the Delta these restoration efforts could be prioritized.
    Science topics Salmon rearing, Salmon migration, Habitat restoration
    Updated April 29, 2022
  • Title

    Do light, nutrient, and salinity interactions drive the “bad Suisun” phenomenon? A physiological assessment of biological hotspots in the San Francisco Bay-Delta

    Lead University of California - Santa Cruz [UCSC]
    Description This project assessed the physiological basis for reduced phytoplankton growth in Suisun Bay, prior to the major upgrade at the Sacramento Regional Wastewater Treatment Plant (SRWTP), which is responsible for 90% of the nitrogen released into the bay. The work involved analyzing almost three decades of historical eld data from the bay-delta and using it to build a model to evaluate environmental drivers of phytoplankton biomass. Discoveries from the eld data were then tested through laboratory culturing experiments. By illuminating the interacting e ects of bottom- up drivers (light, nutrients, salinity) on phytoplankton, this research helps provide a fundamental understanding of this complex ecosystem.
    Science topics Ammonia, Flushing rates, Light, Open water, Pelagic fish, Phytoplankton, Salinity, Wastewater discharge, Water temperature
    Updated November 17, 2022
  • Title

    Operation Baseline Project 1: Conceptual Framework

    Lead Delta Stewardship Council
    Description A multidisciplinary team will develop a thorough conceptual model that will describe current conditions and consider changes from the WWTP upgrade. The model will be used to identify the highest priority science questions and investigations to pursue before, during, and after the plant upgrade.
    Science topics Algae, Floating aquatic vegetation, Food webs, Nitrogen / ammonia, Open water, Other discharge contaminants, Phytoplankton, Submerged aquatic vegetation, Wastewater discharge, Water operations / exports, Wetlands, Zooplankton
    Updated December 14, 2022
  • Title

    Integrating Ecosystems, Flood Control, Agriculture, and Water Supply Benefits: An Application to the Yolo Bypass

    Lead University of California - Davis [UC Davis]
    Description The Yolo Bypass presents an opportunity to develop mechanisms governing the management of flows across floodplains that balance ecosystem services with economic and recreational functions, and to study the untapped potential of such floodplains to play a role in conjunctive surface and groundwater management. Analysis to the necessary high degree of spatial resolution for such management decisions is generally lacking for the Yolo Bypass. This proposal seeks funding for an interdisciplinary study to better understand the economic, hydrologic, and ecological functioning of land and water across the bypass, and to develop tools that use this knowledge in identifying promising strategies for the timing and configuration of spring inundation. Agronomic, economic, and hydraulic models will be used with formal interviews to study the relationship between flooding and six Yolo Bypass functions: (1) Agricultural Economics, (2) Waterfowl management, (3) Native Fish habitat, (4) Flood Control, (5) Groundwater storage, and (6) Recreation. Data from these first efforts will be incorporated into an optimization model that identifies promising inundation alternatives for ecosystem services which minimize costs to landowners and waterfowl managers, and maximize potential conjunctive use benefits. This synthesis answers the Delta Science Program's request for coupled hydrologic and ecosystem models, and for water and ecosystem management decision support system development.
    Science topics None specified
    Updated April 29, 2022
  • Title

    Open-Source Resources for the Sacramento-San Joaquin Delta Telemetry Research Community

    Lead Cramer Fish Sciences
    Description There is a great deal of telemetry data amassed from studies in the Sacramento-San Joaquin Delta. It continues to grow every year with special studies and monitoring efforts. Multiple research priorities surrounding fish ecology in the Delta could be addressed, at least in part, by synthesizing the myriad telemetry data sets that exist; this work would benefit greatly from the centralization and standardization of data workflows surrounding telemetry research. With the guidance of a PIT Advisory Team, we plan to establish a collection of open-source, technology-agnostic, accessible resources to support a reproducible and transparent telemetry data workflow for researchers in the region. The workflow and resources do not invent new procedures, rather improve and standardize those already used by the telemetry research community. This will bring us in closer alignment with centralized, coordinated data workflows that have been successfully implemented in other regions and data communities. The final open-source set of resources will include a design and roadmap for implementing a central telemetry database and workflow, an R package for the preparation, QA/QC, and basic analysis of telemetry data, and a regional workshop offering training programs in the proposed telemetry data workflow.
    Science topics Chinook Salmon, Fish, Other species, Salmon migration, Steelhead Trout, Striped bass, Sturgeon
    Updated August 26, 2024
  • Title

    The value of information is context dependent: a demonstration of decision tools to address multi-species river temperature management under uncertainty

    Lead CALFED Bay-Delta Program
    Description

    Tradeoffs among objectives in natural resource management can be exacerbated in altered ecosystems and when there is uncertainty in predicted management outcomes. Multicriteria decision analysis (MCDA) and value of information (VOI) are underutilized decision tools that can assist fisheries managers in handling tradeoffs and evaluating the importance of uncertainty. We demonstrate the use of these tools using a case study in the Sacramento River, California, U.S.A., where two imperiled species with different temperature requirements, winter-run Chinook Salmon (Oncorhynchus tshawytscha) and Green Sturgeon (Acipenser medirostris), spawn and rear in the artificially cold Shasta Dam tailwater. A temperature-control device installed on Shasta Dam maintains cool water for Chinook Salmon; however, uncertainties exist related to the effects of temperatures on the spawning and rearing of both species. We consider four alternative hypotheses in models of early life-stage dynamics to evaluate the effects of alternative temperature-management strategies on Chinook Salmon and Green Sturgeon management objectives. We used VOI to quantify the increase in management performance that can be expected by resolving hypothesis-based uncertainties as a function of the weight assigned to species-specific objectives. We found the decision was hindered by uncertainty; the best performing alternative depends on which hypothesis is true, with warmer or cooler alternative management strategies recommended when weights favor Green Sturgeon or Chinook Salmon objectives, respectively. The value of reducing uncertainty was highest when Green Sturgeon was slightly favored, highlighting the interaction between scientific uncertainty and decision makers’ values. Our demonstration features MCDA and VOI as transparent, deliberative tools that can assist fisheries managers in confronting value conflicts, prioritizing resolution of uncertainty, and optimally managing aquatic ecosystems.

    Science topics Chinook Salmon, Fish, Flows, Green sturgeon, Salmon rearing, Sturgeon, Temperature, Water conveyance / infrastructure, Water temperature
    Updated October 10, 2024