Science activities

Reset filters

4 records


















Records

Currently, sorted by last updated
Download
  • Title

    Landscape Visioning Pilot Application for Staten Island

    Lead San Francisco Estuary Institute [SFEI]
    Description A demonstration project to define possible future land use scenarios for Staten island (“visions”) and leverage existing tools/resources to analyze and compare these scenarios.
    Science topics Habitat restoration, Carbon storage
    Updated April 29, 2022
  • Title

    Low-Cost Satellite Remote Sensing of the Sacramento-San Joaquin Delta to Enhance Mapping for Invasive and Native Aquatic Vegetation

    Lead University of California - Davis [UC Davis]
    Description Invasive aquatic vegetation (IAV) acts as an ecosystem engineer by changing habitat conditions and water quality. This negatively affects the survival of native species. Over the past 15 years, IAV has more than doubled its footprint in the Sacramento-San Joaquin Delta waterways. The State of California spends millions of dollars each year to control IAV in the Delta-Suisun region and costs are likely to continue to rise. Gaining a better understanding of the spread, life history characteristics, and potential vulnerabilities of these species can lead to more effective control strategies. The recent launch of the Sentinel-2 satellite can fill temporal gaps left by annual airborne surveys. This study will create a data pipeline for sustained, low-cost satellite-based monitoring of aquatic and marsh vegetation year-round. To quantify one of the Delta Plan performance measures, the time and degree of floodplain inundation for the Yolo Bypass will be measured. This study will result in new metrics to measure progress toward habitat goals in several restoration sites.
    Science topics Aquatic vegetation, Invasive / non native species
    Updated October 3, 2024
  • Title

    FutureTracts: Leveraging Agent-Based Models to Forecast Land Use Changes in California's Central Valley

    Lead University of California - Santa Cruz [UCSC]
    Description

    The proposed project is driven by the need to understand how land use has changed historically in California's Central Valley due to various drivers including environmental changes and socio-economic developments. Given the region's dependency on agriculture and its vulnerability to climate change—marked by shifts in precipitation patterns and water availability—it's crucial to model these dynamics accurately to forecast future conditions and plan effectively. Using Agent-Based Modeling (ABM) provides a sophisticated means to dissect past interactions between land use and environmental factors at a granular level. This historical understanding is pivotal as it sets the stage for projecting future scenarios. Additionally, the integration of future hydrology data generated from the CalSim3 model and socio-economic scenarios allows for a comprehensive analysis of potential future states. This analysis aims to explore strategic land use modifications that can meet future socio-economic goals under varying water availability scenarios. 

    This research supports several key science actions, making it highly relevant to current policy discussions. It provides actionable insights into large-scale experiments (Science Action 1C), assesses the impact of climate on ecosystems (Science Action 6A), and explores water allocation strategies (Science Action 6E), thereby equipping policymakers and stakeholders with the necessary tools for informed decision-making. These decisions are crucial for maintaining ecological flows and ensuring the longterm viability of both the agricultural sector and the natural ecosystems upon which they depend.

    Science topics None specified
    Updated March 11, 2025
  • Title

    Remote sensing of the Sacramento-San Joaquin Delta to enhance mapping for invasive and native aquatic plant species

    Lead University of California - Davis [UC Davis]
    Description

    Invasive aquatic vegetation (IAV) is widespread in the Sacramento-San Joaquin Delta (Delta) and its change in coverage has been mapped at the species level using spectroscopy data collected once a year, from 2004 to 2008 and from 2014 to 2019. There was no funding to conduct a similar mapping campaign in 2020. This work aims to collect and analyze imagery in summer of 2020 to fulfill two main objectives. First is to inform the monitoring framework for aquatic vegetation put forth for the Interagency Ecological Program (IEP). Comparing spring and fall imagery of 2019 and the summer imagery of 2020, the project will evaluate which time period is ideal for optimal mapping of aquatic vegetation considering the logistical challenges of airborne imagery acquisition and the phenology of the species being mapped. The project will also contrast the pros and cons of the 3 proposed scenarios in the IEP monitoring framework: 1) two hyperspectral acquisitions a year (2019; “best case” scenario), 2) one acquisition a year (2020, “moderate” scenario) and 3) satellite
    data based monitoring (the Sentinel-2 study, “bare bones” scenario). The second objective of the project is to determine if the new treatment framework (new herbicide formulations and application schedules) is effective in controlling the old (Brazilian waterweed, water hyacinth) and newly added target weed species (water primrose, alligator weed) in the Delta ecosystem. 

    Science topics Brazilian waterweed, Invasive / non native species, Remote sensing, Water hyacinth
    Updated February 27, 2025