Science activities

Reset filters

5 records


















Records

Currently, sorted by last updated
Download
  • Title

    Delta Aquatic Resource Inventory

    Lead Sacramento-San Joaquin Delta Conservancy
    Description The Delta Aquatic Resources Inventory of surface waters, wetlands and other aquatic resources in the Sacramento-San Joaquin Delta (Delta) will provide a standard regional approach to wetland classification and mapping to support wetland restoration planning, tracking, and reporting. It will faciliate implementation of the California Wetland and Riparian Areas Monitoring Plan (WRAMP) in the Delta.
    Science topics Wetland mapping
    Updated November 17, 2022
  • Title

    Delta Landscape Scenario Planning Tool

    Lead San Francisco Estuary Institute [SFEI]
    Description The Delta Landscapes Scenario Planning Tool is a set of resources to assist users with developing, analyzing, and evaluating different land use scenarios in the Delta. The tool is designed to inform ongoing and future restoration planning efforts by assessing how proposed projects will affect a suite of landscape metrics relating to desired ecosystem functions.
    Science topics Fish, Landscape metrics, Marsh wildlife, Restoration planning, Riparian wildlife, Sea level rise, Terrestrial wildlife
    Updated November 17, 2022
  • Title

    Freeport Regional Water Project

    Lead East Bay Municipal Utilities District
    Description The Freeport Regional Water Authority (FRWP) is a cooperative effort of the Sacramento County Water Agency (SCWA) and the East Bay Municipal Utility District (EBMUD) of Oakland to supply surface water from the Sacramento River to customers in central Sacramento County and the East Bay area of California.
    Science topics Surface water flow, Stage, Drought, Environmental drivers
    Updated April 29, 2022
  • Title

    SAIL [Coordinated Enhanced Acoustic Telemetry Program]

    Lead U.S. Bureau of Reclamation [USBR]
    Description These monitoring efforts can provide critical information on juvenile salmonid distribution and survival, which inform biologists and managers interpretations of the exposure and intensity of CVP and SWP water operation risks on tagged populations in Central Valley rivers and the Bay- Delta. Understanding salmon survival and migration dynamics in the Delta and its tributaries is critical to the recovery of ESA-listed species, and sport and commercial fisheries management. For example, estimating the population size of endangered Sacramento River Winter-run Chinook (SRWRC) as they enter and exit the Delta is considered critical for informing Delta water management actions (Interagency Ecological Program (IEP) SAG 2013). “The use of realtime acoustic receivers that immediately transmit acoustic tagged (AT) fish detections needs to be included in the expanded network” (Johnson et al., in press). Tracking the fate of individual tagged fish will be accomplished with AT and used to develop estimates of survival and movement for other non-AT fish also part of that group. Population level sampling programs will use survival estimates generated by AT and applied to other mass marked (coded wire tagging) groups to develop improved capture efficiency for these sampling programs. Objectives: • Deploy and service field monitoring acoustic telemetry stations at locations important to fish and water management. • Implant, transport, and release acoustically tagged juvenile ESA-listed wild and hatchery juvenile salmonids. • Analysis and synthesis to support production and development of new metrics for understanding the survival, distribution, and entrainment of juvenile salmonid along the Sacramento River and its floodways, as well as, the Bay-Delta. Six-Year Steelhead Study Continuation Reclamation’s Proposed Action for ROC on LTO Section 4.10.5.12.3 Additional Measures includes a San Joaquin Basin Steelhead Telemetry Study -- Continuation of the 6-Year Steelhead telemetry study for the migration and survival of San Joaquin Origin Central Valley Steelhead. This investigation involves undertaking experiments utilizing acoustically-tagged salmonids to confirm proportional causes of mortality due to flows, exports, and other project and non-project adverse effects on steelhead smelt out-migrating from the San Joaquin Basin and through the southern Delta. This study is to coincide with different periods of operations and focus on clipped hatchery steelhead (Oncorhynchus mykiss). The period of interest is between February 15 and June 15, which coincides with a majority of O. mykiss outmigration from the Stanislaus River and recoveries of steelhead smolts in the Mossdale fish monitoring efforts. This period is to include changes in CVP/SWP operations that include reductions in exports, reductions in reverse flows in Old and Middle rivers (OMR), and San Joaquin River pulse flows to assess the influence of flow and exports on juvenile steelhead survival. This study is designed to evaluate juvenile steelhead route selection at channel divergences in the south Delta and along the mainstem San Joaquin River, and how these behaviors influence survival in specific reaches and through the Delta to Chipps Island.
    Science topics None specified
    Updated April 29, 2022
  • Title

    Earth Observations to Combat Invasive Aquatic Vegetation

    Lead University of California - Merced [UC Merced]
    Description

    Invasive aquatic vegetation (IAV) is a threat to aquatic ecosystems worldwide, leading to a major loss of biodiversity and extensive damages and costs to human uses of those ecosystems. The Sacramento-San Joaquin River Delta (the “Delta”) is the hub of California’s water system, supporting over 35 million water users and a $54 billion agricultural industry. The Delta reform act mandates management decisions meet both water supply needs while maintaining the ecological function of the system. The Delta is a global biodiversity hotspot, and the focal point of $750-$950 million in restoration. It has also been called one of the most invaded estuaries in the world. Over the past 15 years, submerged and floating IAV have more than doubled in extent, threatening water supply and ecosystem health of the Delta. There is mounting evidence that herbicide treatments are not effective, and that water management actions, and wetland restoration may be having huge impacts on IAV. This presents both a risk to increasing IAV, but also an opportunity to prevent and even  effectively combat IAV through considered water management actions and better restoration planning, meeting the state’s co-equal goals of water security and Delta ecosystem conservation.

    This project will meet the needs of multiple state agencies by advancing operational Earth observation-based monitoring program for community-level submerged aquatic vegetation (SAV) and genus-level floating aquatic vegetation (FAV) and modeling tools to enable the Delta management community to assess the effect of previous management actions on IAV and forecast the effects of future actions to inform multi-agency decision making. Specifically, this work will 1) Operationalize IAV class mapping using Sentinel-2 satellite imagery, 2) Finalize and validate species distribution Models (SDM) for SAV community and FAV at genus-level to assess the impacts of previous water actions on IAV and predict IAV distribution in future scenarios, 3) Co-design IAV-based performance metrics to inform future actions.

    The proposed project fills a critical data gap in monitoring for state and federal agencies and stakeholders by implementing the first sustainable mapping effort for IAV. Monthly and seasonal estimates of SAV and FAV coverage will enable the Delta Stewardship Council to improve their performance metrics for evaluation of the Delta Plan and will help the Interagency Ecological Program assess whether management is meeting the co-equal goals for the Delta. Species distribution models will enable Department of Water Resources to evaluate how previous restoration flow actions have affected the spread and persistence of IAV and incorporate what they learn into future Structured Decision Making to better account for negative consequences of IAV when setting future restoration targets and implementing actions.

    Science topics Aquatic vegetation, Emergent macrophytes, Floating aquatic vegetation, Habitat restoration, Invasive and non native species, Monitoring methods and techniques, Other species, Remote sensing, Saltwater and freshwater marshes, SAV and FAV, Submerged aquatic vegetation, Tidal wetlands, Water hyacinth, Wetland mapping, Wetlands
    Updated December 11, 2025