Science activities

Reset filters

5 records


















Records

Currently, sorted by last updated
  • Title

    A Non-Point Source of Contaminants to the Estuarine Food Web: Mobilized Particles from the Intertidal Zone

    Lead California State University [CSU]
    Description The purpose of this research project is to quantify the process of contaminant concentration and resuspension of shallow and intertidal cohesive sediments at sites along the salinity gradient from Prospect Island to San Pablo Bay. This research is important because it helps to understand the pathways by which contaminants are assimilated, which is essential to appropriately manage habitat areas.
    Science topics None specified
    Updated April 29, 2022
  • Title

    Tidal Wetland Restoration in the Bay-Delta Region: Developing Tools to Measure Carbon Sequestration, Subsidence Reversal, and Climate Resiliance 2021

    Lead California State University [CSU]
    Description Tidal marshes are important ecosystems in the San Francisco-Bay Delta. They remove carbon from the atmosphere, build up soils that buffer our communities from sea level rise, mitigate excessive nutrients (like nitrogen), and provide critical habitat and food resources for a diversity of species. It is difficult to predict how tidal marshes change naturally over time versus as a response to climate change, restoration and water quality changes. This project provides the first ever multi-year dataset of the complete carbon budget of a tidal marsh. This dataset will be used to predict seasonal and annual carbon budgets in tidal marshes over a range of salinities. The model will assess the sustainability of existing and potential restored tidal wetland benefits over the next 100 years using remote sensing data. The model will be an open-source tool designed for use by wetland managers and decision makers in the Bay-Delta region. This project supports ongoing initiatives to restore tidal wetlands in the Delta and our ability to manage them in a changing world.
    Science topics None specified
    Updated April 29, 2022
  • Title

    Wetland carbon sequestration and impacts of climate change

    Lead California State University [CSU]
    Description This project aims to improve understanding of atmospheric and hydrologic carbon fluxes in a restored tidal salt marsh in the South San Francisco Bay. I will use soil chambers to measure how much carbon dioxide and methane is taken in and emitted from the marsh. The project will also examine how spatial variability in marsh surface cover impact these exchanges. Shahan will use the data collected in this study to create a biogeochemical model that estimates the carbon budgets of wetlands in the Bay-Delta. A complete carbon budget will illuminate relationships between carbon fluxes and environmental variables. This information can support more informed management of wetlands, as well as allow researchers and decision makers to more effectively plan wetland restoration to be effective in managing carbon fluxes in the face of possible impacts due to climate change.
    Science topics Wetlands
    Updated April 29, 2022
  • Title

    Assessing sea-level rise and flooding changes in the Sacramento/San Joaquin Delta using historical water-level records

    Lead California State University [CSU]
    Description The project aims to recover, digitize, and analyze more than 1300 station years of ‘lost-and-forgotten’ water level records collected from 1857 to 1982 in the Sacramento-San Joaquin Delta. These measurements, augmented by modern data, will improve our understanding of tidal, flood, and sea level trends in the system. By determining ‘hotspots’ of habitat and flood risk sensitivity, the results may be used to better focus future scientific and management priorities, to protect the environment, manage flood risk, and enhance community resilience to climate change
    Science topics Backwater, Climate change, Environmental drivers, Estuaries, Land elevation, Levees, Outflow, Sea level rise, Stage, Subsidence, Surface water / flow, Tides, Velocity, Vessels and shipping channels, Water, Wind
    Updated October 10, 2023
  • Title

    Plant traits of Vallisneria australis

    Lead California State University [CSU]
    Description Individual clones/plants of Vallisneria australis were sampled from a Delta location. Specimens were sampled from the center of each patch (<200 m2) or bed (≥200 m2) to control for variation within each bed. Four (4) individual plants (rhizome with complete vertical shoots) were collected by hand and transported back to the laboratory in Ziplocs. Leaves per shoot, leaf area, shoot height, shoot width, rhizome length, rhizome diameter along the internodal segment of the main rhizome, and wet and dry biomass were measured for all plants. Those data are included in this Science Tracker report.
    Science topics Invasive / non native species
    Updated August 18, 2024