Science activities

Reset filters

4 records


















Records

Currently, sorted by last updated
Download
  • Title

    Bridging Science and Community: Engaging Youth in Delta Conservation through the Spinning Salmon Program

    Lead University of California - Davis [UC Davis]
    Description

    Bridging Science and Community: Engaging Youth in Delta Conservation through the Spinning Salmon Program is designed to enhance scientific understanding and engagement among underrepresented youth in the Sacramento-San Joaquin Delta. Leveraging the Youth-Focused Community and Citizen Science (YCCS) framework, the program connects youth to local ecosystems while addressing ecological challenges such as the Thiamine Deficiency Complex affecting Central Valley Chinook Salmon. The objectives focus on enhancing students' understanding of scientific concepts and processes, fostering science identity, self-efficacy, and environmental science agency, and cultivating a sense of environmental stewardship. Additionally, the program emphasizes the active involvement of community members in co-creating and refining educational strategies, ensuring these approaches are tailored to the diverse cultural and educational needs of the Delta community. This aligns with Science Action C under Management Need 4 in the 2022-2026 Science Action Agenda (SAA), contributing to a broader understanding of community-engaged research methodologies. 

    Science topics None specified
    Updated March 11, 2025
  • Title

    Understanding Social-Environmental Interactions in Suisun-Delta Tidal Marsh Restoration

    Lead San Francisco State University [SFSU]
    Description

    Assessing the success of tidal marsh restoration is a top priority for coastal managers across the US. Estuarine habitat restoration has been prioritized due to the importance of the ecosystem functions (Callaway et al. 2012) and services (Costanza et al. 2014) they provide and the threats to them by climate driven sea-level rise (hereafter SLR; Craft et al. 2009, Donnelly & Bertness 2001, Schile et al. 2014) and other stressors (Mariotti & Fagharazzi 2013). Given the importance of management for estuarine habitats to survive SLR (Kirwan & Megonigal 2013) and the importance of public responses to approve and fund restoration projects, it is critical to understand how to broadly assess the success of restoration from the perspectives of both ecological performance and public perceptions. However, the San Francisco Estuary (SF Estuary), stretching from the Lower San Francisco Bay through Suisun Marsh to the Sacramento-San Joaquin Delta, encapsulates diverse social and environmental dynamics (Moyle et al. 2014) and varying perceptions by sociodemographic group (Rudnick et al 2022). Our project is focused on the Suisun Marsh and Delta and seeks to understand these complexities by integrating social, environmental, and management perspectives.

     

    Science topics Habitat restoration
    Updated July 16, 2025
  • Title

    The effects of climate change on the life history of spring-run Chinook Salmon through time

    Lead University of California - Santa Cruz [UCSC]
    Description

    Chinook Salmon (Oncorhynchus tshawytscha) populations in California are in decline due to the combined effects of habitat degradation, water diversions, and shifting climate regimes. This project uses archival tissues (otoliths, vertebrae) from modern and ancient spring-run Chinook Salmon to understand how shifts in migration timing and habitat use allowed salmon to cope with highly variable environmental conditions. We will learn how salmon responded to the recent drought and flood periods (2012-2020 CE), the California Gold Rush Period (~1835-1870 CE), the Little Ice Age (~1560-1780 CE), and the Megadrought Period (~1200-1410 CE). This effort will provide the insights needed for developing climate-adapted conservation actions to support salmon into the future.

    Science topics Chemistry, Chinook Salmon, Climate change, Environmental drivers, Fish, Habitat, Salmon rearing
    Updated April 8, 2025
  • Title

    Earth Observations to Combat Invasive Aquatic Vegetation

    Lead University of California - Merced [UC Merced]
    Description

    Invasive aquatic vegetation (IAV) is a threat to aquatic ecosystems worldwide, leading to a major loss of biodiversity and extensive damages and costs to human uses of those ecosystems. The Sacramento-San Joaquin River Delta (the “Delta”) is the hub of California’s water system, supporting over 35 million water users and a $54 billion agricultural industry. The Delta reform act mandates management decisions meet both water supply needs while maintaining the ecological function of the system. The Delta is a global biodiversity hotspot, and the focal point of $750-$950 million in restoration. It has also been called one of the most invaded estuaries in the world. Over the past 15 years, submerged and floating IAV have more than doubled in extent, threatening water supply and ecosystem health of the Delta. There is mounting evidence that herbicide treatments are not effective, and that water management actions, and wetland restoration may be having huge impacts on IAV. This presents both a risk to increasing IAV, but also an opportunity to prevent and even  effectively combat IAV through considered water management actions and better restoration planning, meeting the state’s co-equal goals of water security and Delta ecosystem conservation.

    This project will meet the needs of multiple state agencies by advancing operational Earth observation-based monitoring program for community-level submerged aquatic vegetation (SAV) and genus-level floating aquatic vegetation (FAV) and modeling tools to enable the Delta management community to assess the effect of previous management actions on IAV and forecast the effects of future actions to inform multi-agency decision making. Specifically, this work will 1) Operationalize IAV class mapping using Sentinel-2 satellite imagery, 2) Finalize and validate species distribution Models (SDM) for SAV community and FAV at genus-level to assess the impacts of previous water actions on IAV and predict IAV distribution in future scenarios, 3) Co-design IAV-based performance metrics to inform future actions.

    The proposed project fills a critical data gap in monitoring for state and federal agencies and stakeholders by implementing the first sustainable mapping effort for IAV. Monthly and seasonal estimates of SAV and FAV coverage will enable the Delta Stewardship Council to improve their performance metrics for evaluation of the Delta Plan and will help the Interagency Ecological Program assess whether management is meeting the co-equal goals for the Delta. Species distribution models will enable Department of Water Resources to evaluate how previous restoration flow actions have affected the spread and persistence of IAV and incorporate what they learn into future Structured Decision Making to better account for negative consequences of IAV when setting future restoration targets and implementing actions.

    Science topics Aquatic vegetation, Emergent macrophytes, Floating aquatic vegetation, Habitat restoration, Invasive and non native species, Monitoring methods and techniques, Other species, Remote sensing, Saltwater and freshwater marshes, SAV and FAV, Submerged aquatic vegetation, Tidal wetlands, Water hyacinth, Wetland mapping, Wetlands
    Updated December 11, 2025