The proposed project is driven by the need to understand how land use has changed historically in California's Central Valley due to various drivers including environmental changes and socio-economic developments. Given the region's dependency on agriculture and its vulnerability to climate change—marked by shifts in precipitation patterns and water availability—it's crucial to model these dynamics accurately to forecast future conditions and plan effectively. Using Agent-Based Modeling (ABM) provides a sophisticated means to dissect past interactions between land use and environmental factors at a granular level. This historical understanding is pivotal as it sets the stage for projecting future scenarios. Additionally, the integration of future hydrology data generated from the CalSim3 model and socio-economic scenarios allows for a comprehensive analysis of potential future states. This analysis aims to explore strategic land use modifications that can meet future socio-economic goals under varying water availability scenarios.
This research supports several key science actions, making it highly relevant to current policy discussions. It provides actionable insights into large-scale experiments (Science Action 1C), assesses the impact of climate on ecosystems (Science Action 6A), and explores water allocation strategies (Science Action 6E), thereby equipping policymakers and stakeholders with the necessary tools for informed decision-making. These decisions are crucial for maintaining ecological flows and ensuring the longterm viability of both the agricultural sector and the natural ecosystems upon which they depend.
Chinook Salmon (Oncorhynchus tshawytscha) populations in California are in decline due to the combined effects of habitat degradation, water diversions, and shifting climate regimes. This project uses archival tissues (otoliths, vertebrae) from modern and ancient spring-run Chinook Salmon to understand how shifts in migration timing and habitat use allowed salmon to cope with highly variable environmental conditions. We will learn how salmon responded to the recent drought and flood periods (2012-2020 CE), the California Gold Rush Period (~1835-1870 CE), the Little Ice Age (~1560-1780 CE), and the Megadrought Period (~1200-1410 CE). This effort will provide the insights needed for developing climate-adapted conservation actions to support salmon into the future.