Science activities

Reset filters

6 records


















Records

Currently, sorted by last updated
Download
  • Title

    Feasibility of Acoustic Telemetry in Delta Smelt

    Lead University of California - Davis [UC Davis]
    Description

    This project aims to test the feasibility of using novel acoustic transmitters to track Delta smelt in the San Francisco Bay-Delta. Successful utilization of acoustic telemetry to track Delta smelt can provide researchers and resource managers with information about the species’ habitat preferences, the effects of water-management practices on Delta smelt movement and distribution, and the success of ongoing supplemental release efforts. The assessment of feasibility will include a comprehensive analysis of both the lethal and sublethal effects of surgical tag implantation on Delta smelt, as well as the development of a species-specific tagging protocol.

    Science topics Delta Smelt
    Updated October 15, 2024
  • Title

    Tracking saltwater intrusion in the Sacramento-San Joaquin Delta: A satellite remote sensing approach to estuarine turbidity maxima

    Lead University of California - Santa Barbara [UCSB]
    Description

    The Sacramento-San Joaquin Delta is a highly altered and impaired ecosystem that is critical to the freshwater infrastructure of the State of California. Salt intrusion from San Francisco Bay into the Delta, however, threatens freshwater delivery to the southern portions of the state and so management and restoration actions within the Bay-Delta must continuously balance both ecosystem and operational needs. While previous  numerical modeling studies have sought to examine changes in the estuarine physics of the system, these tools are costly to develop and run. Thus there is a need to develop alternate methods for monitoring the movement of water through the Bay-Delta, as proposed here. The proposed research project approaches tracking the mixing between the Bay and Delta waters through the novel use of daily satellite color imagery. These findings will be linked to in situ measurements throughout the system and used to inform relevant agencies of flow characteristics within the waterways. This work is motivated by a need for high frequency monitoring of finescale features within the dynamic Bay-Delta ecosystem and to take advantage of new advanced remote sensing technology to inform on long-term trends within the Delta.

    The primary objectives of this research are to: 1. Enhance monitoring programs to inform management in the presence of climate change and additional stressors, 2. Inform on ecosystem resilience to interannual hydrologic variations and climate change impacts, and 3. Evaluate how climate change and flow regime changes will impact water quality in the Delta.

    Science topics Salinity
    Updated March 11, 2025
  • Title

    The effects of surgical implantation of miniaturized acoustic transmitters in longfin smelt, Spirinchus thaleichthys

    Lead University of California - Davis [UC Davis]
    Description

    The San Francisco Estuary (SFE) supports the southernmost reproductive population of longfin smelt (LFS) along the Pacific Coast. Long term monitoring studies have observed a precipitous decline of LFS in the SFE over the past several decades, and the San Francisco Bay-Delta Distinct Population Segment was listed as endangered under the Endangered Species Act in July of 2024. There are important gaps in our understanding of LFS ecology and movement within the highly urbanized SFE, posing challenges to the development of effective recovery strategies. More complete information about the movement and migration of LFS in the wild can lead to improved life-cycle modeling and provide insight into the species’ relationship with temperature, salinity and other habitat features of the SFE. An effective tool to learn about fish migration and movement is through a tracking method known as acoustic telemetry. Until recently this practice has been impossible on small fish such as LFS due to their body size relative to existing acoustic transmitters, or ‘tags’. With recent advances in telemetry technology, we now have an opportunity to implant newly miniaturized acoustic transmitters into adult LFS. However, before the results of telemetry studies utilizing these newly developed transmitters can be used to make inferences about wild populations, it is imperative to determine whether the tagged individuals are surviving and behaving in the same way as their un-tagged counterparts. The study aims to establish post-tagging survival and transmitter retention rates of wild and captive-reared LFS surgically implanted with newly miniaturizes acoustic transmitters, as well as the sublethal effects of transmitter implantation on LFS swimming performance. The results of this study will directly inform the implementation of acoustic telemetry on LFS, aiding in the conservation and recovery of an imperiled native species.

    Science topics None specified
    Updated May 19, 2025
  • Title

    Leveraging Citizen Science to Study Sturgeon Mortality in the San Francisco Estuary

    Lead University of California - Santa Cruz [UCSC]
    Description

    Little is known about sturgeon mortality sources outside management of the White Sturgeon recreational fishery. Mortality has been observed throughout the SFBDE with increased reporting over the past several years. Much of which is concentrated (but not exclusively) in the Carquinez Strait; a narrow strait linking known sturgeon feeding grounds and vital corridor which all SFBDE sturgeon must pass to access spawning grounds. Adult sturgeon populations in the SFBDE are difficult to estimate in part due to unknown rates of mortality, outside the recreational fishery. Specific, non-angling mortality data and sources are needed to develop management strategies that that lead to robust abundance estimates ensuring persistence of these public resources. 
    This project aims to dentify and enumerate non-fisheries sturgeon mortality in the San Francisco Bay Delta Estuary (SFBDE), specifically the Carquinez Strait. We plan to determine population characteristics of observed mortality, age structure and migration patterns/habitat use of collected sturgeon. We will also engage the local community through outreach efforts to investigate the public perception of sturgeon mortality in SFBDE and increase participation in our study.

    Science topics Monitoring methods and techniques, White Sturgeon
    Updated July 16, 2025
  • Title

    From Source to Sea: Building an Integrated Cross-Cultural Vision of Sierra Headwaters and Delta Resilience

    Lead Sierra Streams Institute
    Description

    As source areas of snowmelt, Sierra Nevada headwater streams are the origin of water that feeds the Delta, but their response to climate change is not well understood. By utilizing long-term data and modeling future responses, we build a tool to reduce scientific uncertainty about Delta water supply and water quality in a changing climate. By incorporating indigenous cultural values, we create a fully integrated shared vison of the future of the Delta in a changing climate, including mapping which areas are most vulnerable and in need of conservation or restoration.

    The project objectives are:
    1. Utilize and expand on existing water quality and biological monitoring networks in Sierra Nevada headwaters streams to construct models of ecosystem dynamics with respect to climate induced stress impacts on benthic communities, water quality, and nutrients.
    2. Construct an oral-history-derived framework of indigenous cultural values of Delta headwaters systems and how science and indigenous values can interact to improve management outcomes.
    3. Utilize and expand on existing platforms for dissemination of forecasting tools and model outputs to water managers as well as both scientific and non-scientific communities in the Delta headwaters.

    Science topics None specified
    Updated July 16, 2025
  • Title

    The effects of climate change on the life history of spring-run Chinook Salmon through time

    Lead University of California - Santa Cruz [UCSC]
    Description

    Chinook Salmon (Oncorhynchus tshawytscha) populations in California are in decline due to the combined effects of habitat degradation, water diversions, and shifting climate regimes. This project uses archival tissues (otoliths, vertebrae) from modern and ancient spring-run Chinook Salmon to understand how shifts in migration timing and habitat use allowed salmon to cope with highly variable environmental conditions. We will learn how salmon responded to the recent drought and flood periods (2012-2020 CE), the California Gold Rush Period (~1835-1870 CE), the Little Ice Age (~1560-1780 CE), and the Megadrought Period (~1200-1410 CE). This effort will provide the insights needed for developing climate-adapted conservation actions to support salmon into the future.

    Science topics Chemistry, Chinook Salmon, Climate change, Environmental drivers, Fish, Habitat, Salmon rearing
    Updated April 8, 2025