Science activities

Reset filters

5 records


















Records

Currently, sorted by last updated
  • Title

    Habitat, hatcheries, and nonnative predators interact to affect juvenile salmon behavior and survival

    Lead University of California - Santa Cruz [UCSC]
    Description Chinook salmon are an iconic part of California’s environment and heritage, and important both economically and culturally. In the Sacramento River, the winter-run Chinook population is endangered, and there is strong interest in restoring these populations. To do so, resource managers need to better understand the pressures on wild populations. Predation by nonnative predators affects survival of young salmon but may also affect the behavior of salmon. Changes to salmon behavior also have costs but are not currently considered in management. Managers need information on how predators affect juvenile salmon behavior, how they might vary under different conditions, and how they scale up to affect populations.
    Science topics Chinook Salmon, Fishing
    Updated November 17, 2022
  • Title

    Consequences of Phragmites invasion for community function in Suisun Marsh

    Lead University of California - Davis [UC Davis]
    Description This project aims to quantify the impacts of common reed (Phragmites) invasion on community structure and ecosystem function during early stages of tidal restoration in wetlands. The study will focus on the Tule Red Tidal Restoration site in Suisun Marsh. The research aims to produce a conceptual model that will describe habitat structure, invertebrate communities, and predator use of wetlands affected by Phragmites invasion. The conceptual model resulting from this study will guide future predictions of wetland response to invasion and to develop mitigation strategies. Data collected will also support food web models and the understanding of invasive plants as stressors, as well as foster translational science to the management community.
    Science topics Invasive / non native species
    Updated April 29, 2022
  • Title

    Risk of fish predation within and across tidal wetland complexes

    Lead University of California - Davis [UC Davis]
    Description This study focuses on understanding how restored tidal wetlands with different physical configurations function as refuge and rearing habitat for fishes, including native and imperiled species such as delta smelt and juvenile Chinook salmon. This research will assess the spatial distribution of predation risk as it varies within and across tidal wetlands. The proposed research will generate a statistical model that helps predict predation outcomes from various restored tidal wetland designs and channel configurations. This will be a powerful tool for managers to forecast how proposed habitat restoration or water management actions may impact native fish populations.
    Science topics Tidal wetlands
    Updated April 29, 2022
  • Title

    Environmental geochemistry and tidal wetland support of pelagic food webs

    Lead University of California - Davis [UC Davis]
    Description This project aims to characterize and quantify where detrital material (decaying plant matter) originates within wetlands, the composition of that material, and how export of detrital particles occurs. This project will combine powerful characterization tools and techniques that scale from molecules to ecosystems to assess spatial and temporal trends in particle sources, species and composition. Because restoration in the Sacramento-San Joaquin Delta will fundamentally alter particle distribution and food availability for aquatic organisms, this study will inform habitat restoration efforts and the revival of native fish populations. The tools developed and adapted for this project may inform management response during extreme conditions and climate events by helping to identify areas that may act as refugia for species.
    Science topics Wetlands
    Updated April 29, 2022
  • Title

    Examining the relationship between Longfin Smelt and flow in the San Francisco Bay Delta

    Lead University of California - Berkeley [UC Berkeley]
    Description The overarching goal of this study is to investigate the time-varying effects of flow variation and food availability on longfin smelt population dynamics, via advanced modeling of a diverse set of environmental and ecological monitoring time series. Specifically, this project will:(1) Assess how key environmental drivers (flow, salinity, temperature) have changed over the past 5 decades (1967 to present) across the San Francisco Estuary (SFE); (2) Examine how longfin smelt population dynamics have changed over that time period, and whether/when breakpoints in abundance and trends exist (e.g., periods of 'decline' vs' stability'); (3) Quantify the effects of environmental on driving observed fluctuations in longfin smelt dynamics; (4) Determine whether/how environment-smelt relationships have changed in magnitude or sign over time; and if they changed, whether such changes have been spatially consistent across the SFE. These goals will inform ongoing conservation efforts of longfin smelt by determining the combinations of flow, habitat, and prey availability conditions that lead to stable population dynamics for the species.
    Science topics Fish, Flows, Longfin Smelt, Zooplankton
    Updated May 8, 2024